首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of extracellular Ca2+ concentration and the putative antagonist of intracellular Ca2+ movement, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) on platelet phospholipase activity and thromboxane B2 synthesis were examined in rabbit platelets stimulated by platelet activating factor, thrombin and ionophore A23187. TMB-8 markedly inhibited the platelet activating factor-induced decrease in [14C]arachidonate content in platelet phsophatidylacholine and phosphatidylinositol, while showing minimal effects on thrombin-induced phospholipase activation. A23187 stimulation of these processes was inhibited to an intermediated degree by TMB-8. In contrast, extracellular Ca2+ removal inhibited phospholipase activity to a similar degree with all three stimuli. Moreover, the threshold concentration of extracelullar Ca2+ for phospholiphase activation, as measured by thromboxane B2 synthesis, was similar for platelet activating factor- and thrombin-stimulated platelets. The data provide evidence that, while platelet activating factor and thrombin may, to some extent, have similar requirements for extracellular Ca2+, they utilize a TMB-8 sensitive step to different degrees during activation of platelet phospholipase.  相似文献   

2.
It is well established that reduction of Ca2+ influx through L-type voltage-dependent Ca2+ channel (L-type VDCC), or increase of cytosolic cAMP concentration ([cAMP]c), inhibit contractile activity of smooth muscles in response to transmitters released from sympathetic nerves. Surprisingly, in this work we observed that simultaneous administration of L-type VDCC blocker (verapamil) and [cAMP]c enhancers (rolipram, IBMX and forskolin) potentiated purinergic contractions evoked by electrical field stimulation of rat vas deferens, instead of inhibiting them. These results, including its role in sympathetic transmission, can be considered as a “calcium paradox”. On the other hand, this potentiation was prevented by reduction of [cAMP]c by inhibition of adenylyl cyclase (SQ 22536) or depletion of Ca2+ storage of sarco-endoplasmic reticulum by blockade of Ca2+ reuptake (thapsigargin). In addition, cytosolic Ca2+ concentration ([Ca2+]c) evaluated by fluorescence microscopy in rat adrenal medullary slices was significantly reduced by verapamil or rolipram. In contrast, simultaneous incubation of adrenal slices with these compounds significantly increased [Ca2+]c. This effect was prevented by thapsigargin. Thus, a reduction of [Ca2+]c due to blockade of Ca2+ influx through L-type VDCC could stimulate adenylyl cyclase activity increasing [cAMP]c thereby stimulating Ca2+ release from endoplasmic reticulum, resulting in augmented transmitter release in sympathetic nerves and contraction.  相似文献   

3.
1. Aim: The role of the serotonin transporter (SERT) is to remove serotonin (5-HT) from the synaptic space. In vitro studies have shown that 5-HT uptake via SERT is influenced by the availability of its substrate, 5-HT. We used RN46A cells, a line that expresses SERT, to investigate 5-HT regulation of 5-HT uptake and the intracellular signaling pathways involved. RN46A cells also express mRNAs for 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C) and as cAMP and intracellular Ca2+ are modulated by different 5-HT receptors, we studied both pathways.2. Methods: 5-HT uptake was determined as imipramine-inhibitable uptake of [3H]5-HT, intracellular cAMP was measured by RIA and intracellular Ca2+ changes were determined using the ratiometric method of intracellular Ca2+ imaging.3. Results: For uptake experiments, cells were kept for 30 min either with or without 1 μM 5-HT in the medium before measuring uptake. Removal of 5-HT for 30 min significantly decreased [3H]5-HT uptake. The absence of 5-HT for 15 min failed to induce any changes in intracellular cAMP levels. Removal of 5-HT from the medium did not change intracellular Ca2+ levels either; however, adding 1 μM 5-HT after 5 min in 5-HT-free conditions rapidly increased intracellular Ca2+ levels in 50% of the cells. The remaining cells showed no changes in the intracellular Ca2+ levels.4. Conclusions: We have shown that in RN46A cells, that endogenously express SERT and mRNAs for several 5-HT receptors, changes in 5-HT levels influence 5-HT uptake rate as well as induce changes in intracellular Ca2+ levels. This suggests that 5-HT may utilize intracellular Ca2+ to regulate 5-HT uptake.  相似文献   

4.
The formation of malondialdehyde (MDA) and rabbit aorta contracting substance (RCS) induced by treatment of platelets with thrombin and collagen, but not that produced from exogenous arachidonic acid, is inhibited by prostaglandin E1 (10−8 − 10−7M), the local anesthetics tetracaine, SKF 525-A and dibucaine (1 mM), and the serine-protease inhibitor phenylmethanesulfonyl fluoride (PMSF). The burst in oxygen consumption which accompanies platelet stimulation by thrombin and collagen in the presence of antimycin A, known to be due to the oxidation of endogenous arachidonate, is also markedly suppressed by PGE1, tetracaine and PMSF. The inhibitory effect of PGE1 is strongly potentiated by theophylline (1.0 mM).Addition of the Ca2+ ionophore A23187 to platelet suspensions overcomes PGE1 and PMSF inhibition of MDA and RCS formation, and induces a vigorous increase in O2 consumption. Tetracaine and dibucaine, however, block the responses to A23187.Formation of MDA and RCS (a mixture of PG endoperoxides and TXA2) due to stimulation by thrombin and collagen depends upon activation of Ca2+-dependent phospholipase A2 (PLA2) to supply free arachidonate from specific membrane phospholipids. These experiments therefore indicate that increased cellular cAMP, induced by PGE1, antagonizes the mobilization of the Ca2+ which is normally required for PLA2 activity. Thrombin-stimulated platelets exhibit enhanced 45Ca uptake which probably reflects exchange of extracellular Ca2+ with an increased available pool of exchangeable intracellular Ca2+. PGE1 strongly suppresses this 45Ca uptake, providing more direct evidence supporting the view that cAMP prevents the rise in free cytoplasmic Ca2+ induced by thrombin. Under conditions which make sufficient free cytoplasmic Ca2+ available (i.e., A23187), despite high cellular cAMP, formation of RCS and MDA, and O2 uptake are nearly normal indicating that activation of PLA2 can occur. Local anesthetics on the other hand since they abolish the response to A23187 as well, appear to directly antagonize the ability of Ca2+ to activate PLA2. The effect of PMSF suggests that stimulus-specific proteases may be involved in the thrombin and collagen-induced activation of PLA2 activity.  相似文献   

5.
These experiments were designed to learn the role of bradykinin induced changes in intracellular Ca2+ in the activation of phospholipase D activity in PC12 cells. Ionomycin at a concentration of 0.1M caused an increase in intracellular Ca2+ comparable to bradykinin, but had no effect on phospholipase D activity. Carbachol, ATP, and thapsigargin also increased intracellular Ca2+ but had no effect on phospholipase D activity. Increases in intracellular Ca2+ may be a necessary but not a sufficient factor in the activation of phospholipase D. To investigate this issue, the bradykinin induced increase in intracellular Ca2+ was blocked by preincubating the cells in Ca2+-free media plus EGTA or in media containing the intracellular Ca2+ chelator BAPTA/AM. These preincubations completely blocked the bradykinin induced increase in intracellular Ca2+ but only attenuated the bradykinin mediated activation of phospholipase D. Physiological increases in intracellular Ca2+ apparently do not mediate the effect of bradykinin on phospholipase D.  相似文献   

6.
Sodium butyrate (NaBt), a histone deacetylase inhibitor, can cause apoptosis in a number of cancer cells. However, the mechanism of this action is poorly understood. Increased intracellular [Ca2+] level has been suggested as a likely mechanism, but there is little corroborating data. In this report we provide evidence that NaBt-treated MSN neuroblastoma cells undergo massive apoptosis in the presence of serum and regardless of external or internal [Ca2+] levels. Presented data suggest that apoptotic effect of NaBt is both time- and dose-dependent (LD50 1 mM); and that, presence of serum or cAMP, a second messenger molecule that modulates the apoptotic program in a wide variety of cells could not circumvent the apoptotic effect of NaBt. Our findings suggest that NaBt-induced apoptosis in MSN neuroblastoma cells occurs via a pathway that is independent of Ca2+flux, intracellular [Ca2+] or cAMP levels. Further, we also present data that exclude a role for PKC or histones acetylation.Special issue dedicated to Lawrence F. Eng  相似文献   

7.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   

8.
Abstract: Release-regulating heterocarriers exist on brain nerve endings. We have investigated in this study the mechanisms involved in the neurotransmitter release evoked by GABA heterocarrier activation. GABA increased the basal release of [3H]acetylcholine and [3H]noradrenaline from rat hippocampal synaptosomes and of [3H]dopamine from striatal synaptosomes. These GABA effects, insensitive to GABA receptor antagonists, were prevented by inhibiting GABA uptake but not by blocking noradrenaline, choline, or dopamine transport. Lack of extracellular Ca2+ or addition of tetrodotoxin selectively abolished the GABA-evoked release of [3H]noradrenaline, leaving unaffected that of [3H]acetylcholine or [3H]dopamine. 1,2-Bis(2-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM) or vesamicol attenuated the release of [3H]acetylcholine elicited by GABA. Reserpine, but not BAPTA-AM, prevented the effect of GABA on [3H]dopamine release. Autoreceptor activation inhibited the GABA-evoked release of [3H]noradrenaline but not that of [3H]acetylcholine or [3H]dopamine. It is concluded that (a) the release of [3H]noradrenaline consequent to activation of GABA heterocarriers sited on noradrenergic terminals meets the criteria of a conventional exocytotic process, (b) the extracellular [Ca2+]-independent releases of [3H]acetylcholine and [3H]dopamine appear to occur from vesicles possibly through involvement of intraterminal Ca2+, and (c) autoreceptor activation only affects heterocarrier-mediated vesicular release linked to entry of extracellular Ca2+.  相似文献   

9.
Possible involvement of cAMP-dependent mechanisms in the development of both phasic and tonic contractions induced by oxytocin — OT (25 nM and 25 µM, respectively), as well as of KCl-induced contracture, was studied on the myometrium of estradiol-dominated rats using the myometrial strips with suppressed spontaneous mechanical activity. The intracellular cAMP level was modulated by furosemide that had been previously shown to decrease cAMP content in the rat myometrium tissue. When added to the medium in the pulse mode together with 25 nM OT, furosemide (0.02 mM) increased contraction amplitude by 224%, whereas higher, 0.2 and 20 mM, furosemide concentrations suppressed the response by 286% or totally removed it, respectively. Being present in the bath permanently, 0.2 mM furosemide progressively decreased the amplitude of OT-induced phasic contractions. Under such conditions, 0.02 mM furosemide exerted biphasic effect on the responses, so that the initial enhancement was replaced by the progressive inhibition. Dibutyryl-cAMP (dbcAMP) at a proper concentration restored the responsiveness of the tissue to OT in the presence of furosemide in the saturating concentration. Contractile responses induced by 25 µM OT comprised both phasic and tonic components. In a Ca2+-free medium, the OT-induced contractions seemed to be associated with Ca2+ release from intracellular stores. Permanent presence of furosemide in the CaCl2-containing medium inhibited OT-induced responses in the same manner as omission of Ca2+ from the medium, i.e., furosemide did not affect the responses caused by Ca2+ release but inhibited those mediated via acceleration of the Ca2+ influx. The furosemide-sensitive component of responses to OT was combined with a persistent contraction caused by KCl depolarization; there was a moderate decrease in amplitude of the KCl-induced contracture due to furosemide action. The decrease could be prevented by dbcAMP addition. It is suggested that both voltage-gated and receptor-operated Ca2+ entries induced by OT are regulated by cAMP-dependent protein kinases, while Ca2+ extrusion into the extracellular space does not depend on the intracellular cAMP.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 54–60, January–February, 1994.  相似文献   

10.
Astrocytes modulate synaptic transmission via release of gliotransmitters such as ATP, glutamate, d-serine and l-lactate. One of the main problems when studying the role of astrocytes in vitro and in vivo is the lack of suitable tools for their selective activation. Optogenetic actuators can be used to manipulate astrocytic activity by expression of variants of channelrhodopsin-2 (ChR2) or other optogenetic actuators with the aim to initiate intracellular events such as intracellular Ca2+ ([Ca2+]i) and/or cAMP increases. We have developed an array of adenoviral vectors (AVV) with ChR2-like actuators, including an enhanced ChR2 mutant (H134R), and a mutant with improved Ca2+ permeability (Ca2+ translocating channelrhodopsin, CatCh). We show here that [Ca2+]i elevations evoked by ChR2(H134R) and CatCh in astrocytes are largely due to release of Ca2+ from the intracellular stores. The autocrine action of ATP which is released under these conditions and acts on the P2Y receptors also contributes to the [Ca2+]i elevations. We also studied effects evoked using light-sensitive G-protein coupled receptors (opto-adrenoceptors). Activation of optoα1AR (Gq-coupled) and optoβ2AR (Gs-coupled) resulted in astrocytic [Ca2+]i increases which were suppressed by blocking the corresponding intracellular signalling cascade (phospholipase C and adenylate cyclase, respectively). Interestingly, the bulk of [Ca2+]i responses evoked using either optoAR was blocked by an ATP degrading enzyme, apyrase, or a P2Y1 receptor blocker, MRS 2179, indicating that they are to a large extent triggered by the autocrine action of ATP. We conclude that, whilst optimal tools for control of astrocytes are yet to be generated, the currently available optogenetic actuators successfully initiate biologically relevant signalling events in astrocytes.  相似文献   

11.
We investigated the effect of Ca2+ overload on the phospholipase C-catalyzed hydrolysis of phosphoinositides in the rat left ventricular papillary muscle. Ca2+ overload on the papillary muscle was induced by treatment with 0.3 mM ouabain in Ca2+-containing medium following either Ca2+-containing or Ca2+-free superfusion. The phosphoinositide breakdown was evaluated by determining accumulations of [3H]inositol phosphates ([3H]IPs) in the tissues prelabeled with [3H]inositol. Ca2+ repletion following Ca2+-free superfusion resulted in a rapid but small increase in resting tension that was not followed by contracture, nor was it associated with a significant increase in [3H]IPs accumulations. Treatment with ouabain following Ca2+-containing superfusion increased resting tension after a lag period of several minutes and produced contracture associated with an increase in [3H]IPs accumulations. The ouabain induced increases in resting tension, and accumulations of [3H]IPs were significantly potentiated by prior Ca2+-free superfusion instead of Ca2+-containing superfusion. There was a significant positive correlation between increases in resting tension and the phosphoinositide breakdown. The increased resting tension and the accumulations of [3H]IPs were not antagonized by treatments with prazosin plus atropine or indomethacin, but were abolished by superfusion with Ca2+-free buffer solution. Although the enhanced phospholipase C-catalyzed hydrolysis of phosphoinositides appears to be a consequence rather than a cause of increased intracellular Ca2+, such a biochemical change may provoke a positive feedback mechanism to develop the muscle contracture through the putative intracellular messenger action of inositol triphosphate and diacylglycerol.Abbreviations [3H]IPs [3H]Inositol Phosphates - IP Inositol Phosphate - IP2 Inositol Bisphosphate - IP3 Inositol Trisphosphate - PI Phosphatidylinositol - PI-4-P Phosphatidylinositol-4-phosphate - PI-4,5-P2 Phosphatidylinositol 4,5-bisphosphate - PRZ Prazosin - ATR Atropine - INDO Indomethacin - min Minutes  相似文献   

12.
Background information. In endocrine cells, IP3R (inositol 1,4,5‐trisphosphate receptor), a ligand‐gated Ca2+ channel, plays an important role in the control of intracellular Ca2+ concentration. There are three subtypes of IP3R that are distributed differentially among cell types. RINm5F cells express almost exclusively the IP3R‐3 subtype. The purpose of the present study was to investigate the effect of PKA (protein kinase A) on the activity of IP3R‐3 in RINm5F cells. Results. We show that immunoprecipitated IP3R‐3 is a good substrate for PKA. Using a back‐phosphorylation approach, we show that endogenous PKA phosphorylates IP3R‐3 in intact RINm5F cells. [3H]IP3 (inositol 1,4,5‐trisphosphate) binding affinity and IP3‐induced Ca2+ release activity were enhanced in permeabilized cells that were pre‐treated with forskolin or PKA. The PKA‐induced enhancement of IP3R‐3 activity was also observed in intact RINm5F cells stimulated with carbachol and epidermal growth factor, two agonists that use different receptor types to activate phospholipase C. Conclusion. The results of the present study reveal a converging step where the cAMP and the Ca2+ signalling systems act co‐operatively in endocrine cell responses to external stimuli.  相似文献   

13.
Progesterone appears to be the physiological inducer of the resumption of the meiotic divisions in amphibian oocytes. Within minutes following exposure to progesterone there is a release of Ca2+ and a transient rise in [cAMP]i followed by a fall in [cAMP]i and rise in [cGMP]i over the next 1–3 h. Agents that induce a fall in [cAMP]i induce meiosis whereas those that prevent the fall and/or elevate [cAMP]i block meiosis. A comparison of the conversion of injected [3H]-ATP to [3H]-cAMP and rate of hydrolysis of injected [3H]-cAMP following exposure to meiotic agonists and antagonists indicates that adenylate cyclase and not phosphodiesterase is the rate-limiting step in regulating [cAMP]i in the oocyte. These findings are consistent with a model in which progesterone initiates the resumption of the meiotic divisions by down-regulation of membrane adenylate cyclase via Ca2+ release from specific membrane sites and that a translocation of Ca2+ produces a coordinate activation of guanylate cyclase.  相似文献   

14.
We previously demonstrated that prostaglandin EP3 receptor augments EP2-elicited cAMP formation in COS-7 cells in a Gi/o-insensitive manner. The purpose of our current study was to identify the signaling pathways involved in EP3-induced augmentation of receptor-stimulated cAMP formation. The enhancing effect of EP3 receptor was irrespective of the C-terminal structure of the EP3 isoform. This EP3 action was abolished by treatment with inhibitors for phospholipase C and intracellular Ca2+-related signaling molecules such as U73122, staurosporine, 2-APB and SK&F 96365. Indeed, an EP3 agonist stimulated IP3 formation and intracellular Ca2+ mobilization, which was blocked by U73122, but not by pertussis toxin. The enhancing effect by EP3 on cAMP formation was mimicked by both a Ca2+ ionophore and the activation of a typical Gq-coupled receptor. Moreover, EP3 was exclusively localized to the raft fraction in COS-7 cells and EP3-elicited augmentation of cAMP formation was abolished by cholesterol depletion and introduction of a dominant negative caveolin-1 mutant. These results suggest that EP3 elicits adenylyl cyclase superactivation via Gq/phospholipase C activation and intracellular Ca2+ mobilization in a lipid raft microdomain-dependent manner.  相似文献   

15.
The ubiquitous InsP3/Ca2+ signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca2+ and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca2+] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP3-induced Ca2+ release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP3/Ca2+ signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca2+ signals; (2) cyclosporin A and FK506, inhibitors of Ca2+/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca2+ oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca2+ responses does not involve Ca2+ entry into the cells; (4) cyclosporin A increases InsP3-dependent Ca2+ release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca2+ responses, indicating that PKA and calcineurin act antagonistically on the InsP3/Ca2+ signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP3/Ca2+ signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations.  相似文献   

16.
The influence of extracellular Ca2+ and Mg2+ on the transport of 2-deoxy-[3H]glucose into human polymorphonuclear neutrophils was studied. Omission of these cations from the cell suspensions had little effect on resting hexose uptake. Furthermore, the addition of the bivalent cation chelator, EDTA, depressed uptake only slightly. Similarly, neither cation was essential for the enhanced 2-deoxy-D-[3H]glucose uptake stimulated by two chemotactic factors (C5a and N-formylmethionylleucylphenylalanine) and arachidonic acid: enhanced uptake was only partially depressed by the omission of Ca2+ and Mg2+ from the suspensions and was still prominent in the presence of EDTA. Two other neutrophil stimulants, the ionophores, A23187 and ionomycin, also enhanced hexose uptake but their actions were heavily dependent upon extracellular bivalent cations and were totally abrogated by EDTA. In all instances, extracellular Ca2+, but not Mg2+, supported optimal enhanced hexose transport induced by stimuli.Activation of 2-deoxy-D-[3H]glucose uptake by each of the five stimuli was totally blocked by cytochalasin B (a blocker of carrier-mediated hexose transport) and D-glucose but not by L-glucose. The data indicate, therefore, that a variety of neutrophil stimulants activate carrier-mediated hexose transport. Although this transport can be triggered by the movement of extracellular Ca2+ into the cell (as exemplified by the action of the two ionophores), such Ca2+ movement is not required for the actions of chemotactic factors or arachidonic acid. Other mechanisms, such as a rearrangement of intracellular Ca2+, may be involved in mediating the activation of hexose transport induced by the latter stimuli.  相似文献   

17.
We isolated the 4 kinds of flavonoids from strawberry ‘Nohime’ and examined the effect of these flavonoids on the degranulation in RBL-2H3 cells. The flavonoids were found to suppress the degranulation from Ag-stimulated RBL-2H3 cells to different extents. To disclose the inhibitory mechanism of degranulation by flavonoids, we examined their effects on the intracellular free Ca2+ concentration ([Ca2+]i) and the intracellular signaling pathway such as Lyn, Syk, and PLCγs. The intracellular free Ca2+ concentration ([Ca2+]i) was elevated by FcεRI activation, but these flavonoid treatments reduced the elevation of [Ca2+]i by suppressing Ca2+ influx. Kaempferol strongly suppressed the activation of Syk and PLCγs. It was thus suggested that suppression of Ag-stimulated degranulation by the flavonoids is mainly due to suppression of [Ca2+]i elevation and Syk activation. These results suggested that strawberry would be of some ameliorative benefit for the allergic symptoms.  相似文献   

18.
In this study we investigated the responses of intracellular calcium ([Ca2+]i) and protein kinase C (PKC) to PDGF in U-1242 MG cells. PDGF-BB stimulated [3H]PDBu binding approximately 2–3 fold. This response was inhibited by preincubating the cells with an inhibitor of phospholipase C (PLC), U73122, suggesting that PLC mediates the induction of PKC translocation by PDGF. PDGF also increased the concentration of [Ca2+]i that was attenuated in a calcium-free medium. This indicates that PDGF-induced elevation of [Ca2+]i is mainly due to influx of extracellular calcium. PDGF-stimulated translocation of PKC was inhibited by the intracellular calcium buffer BAPTA/AM. All gangliosides studied except GM3 inhibited these responses with similar efficacy. Collectively, these results indicate that the signal transduction pathway initiated by PDGF leading to PKC translocation in U-1242 MG cells is intact, and this pathway is inhibited by several gangliosides.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

19.
Intracellular Ca2+ mobilization events were assessed in mouse L cells, which contain native prostaglandin E1 receptors and transfected human 2 adrenergic receptors. Both Fura2 (single cell measurements) and Quin 2, (cuvette assays) were used to determine [Ca2+]i levels. Our results demonstrate that in the transfected cells there is a dose-dependent increase in [Ca2+]i in response to isoproterenol (0.1 nM–100 nM), which is inhibited by the -adrenergic antagonist, propranolol, and is a result of intracellular Ca2+ release. [Ca2+]1 in these cells was also increased by prostaglandin E1, 8 bromo cyclic AMP, and aluminum fluoride. Both 8 bromo cAMP and isoproterenol induced a rapid increase in the levels of IP1, IP2, and IP3. The data presented demonstrate that the elevation of intracellular cyclic AMP induces an increase in IP3 production which leads to an elevation in [Ca2+];. We propose that this cyclic AMP dependent activation of the IP3 generating system occurs at a post-receptor site.Abbreviations cAMP Adenosine Cyclic 3-5-Monophosphate - [Ca2+]i intracellular [Ca2+]i - 8 Br cAMP 8 Bromo Adenosine Cyclic 3-5-Monophosphate - DAG Diacylglycerol - EGTA] [Ethylene Bis (oxyethylenenitrilo)] Tetracetic acid - BSA Bovine Serum Albumin - HBSS-H Hanks' Balanced Salt Solution buffered with HEPES to pH 7.4 - HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid - PIP2 Phosphatidylinositol 4,5-bisphosphate - IP2 Inositol 4 Phosphate - IP2 Inositol 4,5 Bisphosphate - IP3 Inositol Trisphosphate - PGE1 Prostaglandin E1 - PBS Phosphate Buffered Saline Solution  相似文献   

20.
Fat cell extracts were electrophoresed on polyacrylamide gels to separate the regulatory subunit and holoenzyme species of protein kinase. Gels were incubated with cyclic [3H]AMP ([3H]cAMP) and washed, and the bound [3H]cAMP was estimated. The band of [3H]cAMP found closest to the origin (Peak I) was associated with cAMP-dependent protamine kinase activity. A seond [3H]cAMP peak (Peak II) also contained protamine kinase activity. Although the kinase activity of Peak II was much less than Peak I, more [3H]-cAMP was bound in Peak II than in Peak I. The [3H]cAMP peak furthest from the origin (Peak III) was devoid of kinase activity.Incubation of extracts with cAMP prior to electrophoresis diminished or abolished kinase activity in Peaks I and II. This incubation also decreased [3H]cAMP binding in Peaks I and II, and increased binding in Peak III. When extracts were incubated with [3H]cAMP before electrophoresis, essentially all of the radioactivity was found in Peak III. It was concluded that Peak I represents a holoenzyme form and that Peak III is composed of the regulatory subunits of this enzyme. Peak II may represent a relatively inactive holoenzyme form not previously described.Incubation of adipocytes with epinephrine resulted in a dose- and time-dependent decrease in Peak I and increase in Peak III, and insulin opposed these effects of epinephrine. After 1-min incubations with epinephrine, the decreases in Peak I or increases in Peak III correlated with increases in phosphorylase a activity, decreases in glycogen synthase I activity and changes in cAMP, both in the presence and absence of insulin. However, after incubation with epinephrine for more than 2 min in the presence of insulin, phosphorylase a activity did not correlate with cAMP, suggesting that factors other than the cyclic nucleotide mediate the effects of epinephrine and insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号