首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Analysis of arylsulfatase A from pseudo arylsulfatase A deficiency fibroblasts by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoradiochemical nitrocellulose blot radiography revealed two subunit bands which migrated faster than subunit bands of enzyme from normal fibroblasts. Immunoreactive material was present only at levels comparable to enzyme activity. These findings imply that arylsulfatase A in pseudodeficiency is structurally altered, but it is catalytically equivalent to normal arylsulfatase A. This altered enzyme must be the product of the pseudodeficiency gene since no immunoreactive product of the metachromatic leukodystrophy gene could be detected in metachromatic leukodystrophy cells by the procedure employed. It is not clear from the present data if the attenuated arylsulfatase A activity in pseudodeficiency results from a decreased rate of synthesis or an increased lability of the mutant enzyme.  相似文献   

2.
We identified a patient suffering from late infantile metachromatic leukodystrophy who genetically seemed to be homozygous for the mutations signifying the arylsulfatase A pseudodeficiency allele. Homozygosity for the pseudodeficiency allele is associated with low arylsulfatase A activity but does not cause a disease. Analysis of the arylsulfatase A gene in this patient revealed a C----T transition in exon 2, causing a Ser 96----Phe substitution in addition to the sequence alterations causing arylsulfatase A pseudodeficiency. Although this mutation was found only in 1 of 78 metachromatic leukodystrophy patients tested, five more patients were identified who seemed hetero- or homozygous for the pseudodeficiency allele. The existence of nonfunctional arylsulfatase A alleles derived from the pseudodeficiency allele calls for caution when the diagnosis of arylsulfatase A pseudodeficiency is based solely on the identification of the mutations characterizing the pseudodeficiency allele.  相似文献   

3.
Precursor forms of the glycoprotein tissue inhibitor of metalloproteinases (TIMP) synthesized by human fibroblasts in culture have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of specific immunoprecipitates. Translation of mRNA extracted from fibroblasts in the cell-free rabbit reticulocyte lysate system yielded a single immunoprecipitable precursor of tissue inhibitor of metalloproteinases, Mr 22 000. Intact fibroblasts cultured in the presence of tunicamycin synthesized an Mr 20 000 form of tissue inhibitor of metalloproteinases, detectable intracellularly and extracellularly. This is in contrast to the predominantly intracellular Mr 24 000.form synthetized during monensin treatment of cells and the normal secreted form of tissue inhibitor of metalloproteinases, Mr 29 000. Isoelectric focusing of the various immunoprecipitable precursor forms showed a progressive increase in positive charge and microheterogeneity of the protein during cellular processing. The data suggest that the inhibitor protein core, of basic pI, is glycosylated initially by the addition of mostly neutral sugars and subsequently by acidic sugars, prior to secretion.  相似文献   

4.
A 9-bp deletion (2320del9) was detected in the arylsulfatase A genes of a patient with late infantile metachromatic leukodystrophy and of a patient with nonprogressive neurological symptoms and very low arylsulfatase A activity. Both patients are heterozygous for the deletion, which involves codons 406–408 and causes loss of a Ser-Asp-Thr tract in the predicted protein. In both patients the 9-bp deletion lies in a pseudodeficiency allele. The patient with metachromatic leukodystrophy carries the common 459 + 1G > A mutation in the other allele. The other patient is homozygous for the pseudodeficiency allele, and consequently is a compound heterozygote for a metachromatic leukodystrophy allele and a pseudodeficiency allele. We hypothesize that the compound heterozygosity predisposes to the development of nonprogressive neurological symptoms in the presence of additional, still unknown, genetic or nongenetic factors. Received: 18 April 1997 / Accepted: 16 August 1997  相似文献   

5.
A family with an obstetric history consistent with placental sulfatase deficiency has X-linked ichthyosis. Steroid sulfatase deficiency was confirmed in placenta, leukocytes, and cultured skin fibroblasts of affected males; arylsulfatase A diminution was also observed in these tissues of both affected males and 2 generations of related females. No symptoms of metachromatic leukodystrophy are present in any family members. In this family, placental sulfatase deficiency, and arylsulfatase A pseudodeficiency are nonallelic.  相似文献   

6.
Synthesis and processing of arylsulfatase A in human skin fibroblasts   总被引:10,自引:0,他引:10  
Biosynthesis of arylsulfatase A in normal and mutant human fibroblasts was studied by growing cells in the presence of L-[4,5-3H] leucine or [2-3H] mannose, isolation of labelled arylsulfatase A by immune precipitation and visualization of electrophoretically separated polypeptide by fluorography. Arylsulfatase A was synthesized as a precursor with a mean apparent molecular mass of 62 kDa. Intracellularly the precursor was converted into a 60.5 kDa polypeptide within a chase period of 1 to 7 days. The 60.5 kDa product in polyacrylamide corresponded to one of two polypeptides present in arylsulfatase A isolated from human placenta. In fibroblasts from a patient with metachromatic leukodystrophy no immune precipitable polypeptides of arylsulfatase A were detected. In normal fibroblasts less than 10% of the precursor of arylsulfatase A was secreted into the medium, whereas in mucolipidosis II fibroblasts and in control fibroblasts grown in the presence of NH4Cl up to 90% of the precursor of arylsulfatase A, appeared in the medium and remained there without change in the apparent molecular mass for at least 7 days. Arylsulfatase A polypeptides appear to contain two carbohydrate side chains. In about 90% of the polypeptides both side chains are cleaved by endo-beta-N-acetylglucosaminidase H, whereas in the remaining chains one of the two oligosaccharides is not cleaved.  相似文献   

7.
Arylsulfatase A in pseudodeficiency   总被引:8,自引:0,他引:8  
Barbara Herz  G. Bach 《Human genetics》1984,66(2-3):147-150
Summary Arylsulfatase A (ASA) is found to be deficient in healthy individuals (pseudo arylsulfatase A deficiency) who usually show in vitro ASA levels in the range of metachromatic leukodystrophy patients. The in vitro properties of ASA in pseudodeficiency were studied in cultured fibroblasts. The residual ASA activity showed apparent Km with the synthetic substrate (2.6mM), pH optimum of activity (pH 5.0), and sensitivity to heat denaturation at 65°C (T1/2, 10 min) similar to those found in controls. To test whether the low in vitro activity is a result of extreme sensitivity to the homogenization procedure, cells were disrupted by five different techniques, including rapid freezing and thawing, hand homogenization, ultrasonication, mild osmotic shock, and nitrogen cavitation; all yielded similar ASA ratio of the pseudodeficient to control. The use of antiproteases phenylmethylsulfonyl fluoride and leupeptin did not affect the residual ASA activity in the pseudodeficient line. These results imply that the ASA that is formed in this condition has properties similar to those of the normal hydrolase, so that even if it is synthesized in lower amounts, it is still sufficient to promote normal catabolism of sulfatide. Screening for ASA activity in lymphocyte extracts of a random sample of 250 individuals revealed 7 individuals with enzyme level in the MLD heterozygote range or lower. These individuals apparently represent homozygosity for pseudodeficiency (pd/pd). This implies that the frequency of the pseudodeficient allele is about 15% in the general population, leading to polymorphism of the ASA.  相似文献   

8.
Summary Metachromatic leukodystrophy is a lysosomal storage disorder caused by the deficiency of arylsulfatase A. Examination of the arylsulfatase A gene in a patient suffering from late infantile metachromatic leukodystrophy revealed an 11-bp deletion in exon 8. Although this allele produces normal amounts of ASA mRNA, no arylsulfatase A cross-reacting material could be detected in cultured fibroblasts from the patient. The patient was found to be a compound heterozygote, the other allele is also known to generate no ASA polypeptides. This patient is another example where absence of ASA polypeptides correlates with the severe late infantile form of metachromatic leukodystrophy.  相似文献   

9.
The synthesis of arylsulfatase A polypeptides was followed in fibroblasts from 11 patients with late-onset forms of metachromatic leukodystrophy. In 10 cell lines, the apparent rate of synthesis was 20%-70% as measured by the amount of [35S]arylsulfatase A secreted in the presence of 10 mM NH4Cl. The specific activity of the secreted arylsulfatase A was normal. The residual activity of arylsulfatase A was below 10% except for one cell line in which it was 20%. The activity of arylsulfatase A and the degradation of sulfatides was partially restored in these fibroblast lines by treatment with irreversible (peptidyl diazomethyl ketones) or competitive (leupeptin) inhibitors of cysteine proteinases. Thus, the mutation(s) in these cell lines led to the synthesis of arylsulfatase. A polypeptides with increased susceptibility to cysteine proteinases. Multiple allelic mutations within this group of late-onset metachromatic leukodystrophy were suggested by the clinical heterogeneity, the variability of the residual activity, and in the response to inhibitors of cysteine proteinases. In fibroblasts from one patient, the apparent rate of synthesis of arylsulfatase A was less than 5%. Furthermore, inhibitors of cysteine proteinases were without effect, suggesting that the mutation in this patient is different from the others.  相似文献   

10.
The occurrence of different mutations on the same arylsulfatase A allele is not uncommon, due to the high frequency of several variants, among which the pseudodeficiency mutations are particularly important. We identified a late infantile metachromatic leukodystrophy patient carrying on one allele the new E253K mutation and the known T391S polymorphism, and on the other allele the common P426L mutation, usually associated with the adult or juvenile form of the disease, and the N350S and *96A>G pseudodeficiency mutations. To analyze the contribution of mutations located on the same allele to enzyme activity reduction, as well as the possible phenotype implications, we performed transient expression experiments using arylsulfatase A cDNAs carrying the identified mutations separately and in combination. Our results indicate that mutants containing multiple mutations cause a greater reduction of ARSA activity than do the corresponding single mutants, the total deficiency likely corresponding to the sum of the reductions attributed to each mutation. Consequently, each mutation may contribute to ARSA activity reduction, and, therefore, to the degree of disease severity. This is particularly important for the alleles containing a disease-causing mutation and the pseudodeficiency mutations: in these alleles pseudodeficiency could play a role in affecting the clinical phenotype.  相似文献   

11.
K Harzer  A S Recke 《Humangenetik》1975,29(4):299-307
In a family with juvenile metachromatic leukodystrophy (sulfatide lipidosis) 2 patients showed residual arysulfatase A activities of 5--6%. The patients' healthy father was characterized biochemically by a 39% normal activity of leukocyte plus plasma arylsulfatase A. The father was further characterized by a high sulfatide excretion (0.2--0.5 mg/I urine) and, paradoxically, by a normal sulfatide degrading enzyme activity in vitro. This special carrier is suspected to be heterozygous for a) arylsulfatase A deficiency and b) arylsulfatase A (sulfatidase) lability. This presumed additional genetic defect could be the cause of the sulfatide excretion which, in turn, would be a sign of the preclinical stage of an exceptional form of adult metachromatic leukodystrophy. The normal sulfatidase activity seems to be due to an in vitro effect.  相似文献   

12.
Multiple deficiency disorder fibroblasts cultured in MEM-CO2 showed deficiencies of arylsulfatase A(ARS A) comparable to the deficiency in metachromatic leukodystrophy fibroblasts. However, the MSDD fibroblasts cultured in MEM-HEPES contained near normal levels of ARS A. Moreover, the enzyme from the latter fibroblasts was indistinguishable from ARS A of control fibroblasts on DEAE-cellulose chromatography, ratio of activity with several substrates, thermal inactivation, sensitivity to inhibitors, and precipitation by antiserum to human ARS A. These data support the conclusion that the ARS A genome is intact in MSDD fibroblasts and, by extension, in MSDD patients. Other sulfatases were present at levels ranging from mildly deficient to near normal but never as low as seen in the corresponding specific sulfatase deficient disorders.  相似文献   

13.
Two siblings of consanguineous parents had presented with a variety of findings indicative of juvenile metachromatic leukodystrophy (MLD). However, instead of the expected profound deficiency of arylsulfatase A (ARS A), their enzyme levels were about half-normal, and enzyme from fibroblasts had properties identical with the properties of enzyme from normal fibroblasts. Nevertheless, the hydrolysis of cerebroside sulfate by growing fibroblasts was markedly attenuated. Supplementation of the fibroblasts with cerebroside sulfatase activator normalized the response in the loading test. These results imply that the fibroblasts, and by extension the patients, are deficient in activator. Although the defective catabolism of cerebroside sulfate and the clinical manifestations in these patients mimic MLD, the molecular basis is distinct from the classical forms of the disorder.  相似文献   

14.
Incubation of normal human fibroblasts with 1–5 μM chloroquine at physiological pH for 8 hr produces granular cytoplasmic inclusions, release of lysosomal enzymes into the medium and decrease of intracellular lysosomal enzyme activities. The effects are dose dependent and reversible. The uptake of arylsulfatase A into fibroblasts genetically deficient in arylsulfatase A (grown from skin biopsies of patients with metachromatic leukodystrophy) is completely inhibited by pretreating the cells with 5 μM chloroquine. Arylsulfatase A, which has been taken up as exogenous enzyme from the medium into the cells, is partially released into the culture medium upon incubation with chloroquine. The data suggest that chloroquine competes with the binding of lysosomal enzymes to the cell membrane and to the membranes of pinocytotic vacuoles and causes release of previously internalized exogenous enzyme.  相似文献   

15.
Two fluorescent derivatives of cerebroside sulfate ('sulfatide') have been synthesized and used as substrates for determining arylsulfatase A activity. These were 12-(1-pyrene)dodecanoyl cerebroside sulfate (P12-sulfatide) and 12(1-pyrenesulfonylamido)dodecanoyl cerebroside sulfate (PSA12-sulfatide). When incubated at pH 5.0 in the presence of 5 mM MnCl2 and 5.5 mM of taurodeoxycholate, either substrate was hydrolyzed by arylsulfatase A of human leukocytes. The rate of hydrolysis was proportional to the incubation time and concentration of enzyme; Michaelis-Menten type kinetics were observed with increasing concentrations of substrate. For determining the rate of hydrolysis, each of the two products (i.e., P12- and PSA12-cerebrosides) were separated from the bulk of respective unreacted sulfatide on small columns of DEAE-Sephadex A-25 and their fluorescence intensities read at 343-378 and 350-380 nm for the excitation and emission wavelengths for P12- and PSA12-cerebrosides, respectively. When extracts of skin fibroblasts derived from normal individuals and patients with Maroteaux-Lamy (lacking arylsulfatase B) or metachromatic leukodystrophy (lacking arylsulfatase A) were used as source of enzyme, P12-sulfatide was hydrolyzed by the former two but not by the latter cell extract. Several derivatives of cerebroside sulfate were also synthesized and found to inhibit the hydrolysis of pyrenesulfatide by leukocyte arylsulfatase A. The results demonstrate that these two pyrene containing sulfatides can be effectively used as specific substrates for the determination of arylsulfatase A activity in extract of cells and most probably also of tissues.  相似文献   

16.
Summary Several cases of metachromatic leukodystrophy (MLD) have been described with normal or near normal activities of arylsulfatase A (cerebroside sulfatase). However, the ability of intact cultured fibroblasts to hydrolyze cerebroside sulfate was impaired. Since the impairment was corrected by cerebroside sulfatase activator, a deficiency of activator was implied. In the absence of direct demonstration of deficiency, other types of evidence were needed to support the premise that the genetic defect was not associated with the arylsulfatase A locus as in classical MLD. Therefore, somatic cell hybrids of activator deficiency and MLD fibroblasts were analyzed. Complementation was indicated by enhanced hydrolysis of cerebroside sulfate, supporting the view that cerebroside sulfatase activator deficiency and MLD are nonallelic.  相似文献   

17.
Pure human arylsulfatase A (EC 3.1.6.1) was found to hydrolyze ascorbic acid 2-sulfate to ascorbic acid and inorganic sulfate at rates from 200 to 2000 mumol/mg per h depending on the method of assay. This rate was lower than that observed with the synthetic substrate 4-nitrocatechol sulfate, but higher than that seen with the physiological substrate cerebroside sulfate. Extracts of cultured fibroblasts from normal subjects were also shown to hydrolyze ascorbic acid 2-sulfate; extracts of fibroblasts from patients with metachromatic leukodystrophy, known to be deficient in arylsulfatase A, did not. Similarly, hydrolysis of ascorbic acid 2-sulfate was not observed when a partially purified preparation of human arylsulfatase B was tested under a variety of conditions. Thus, in the human, arylsulfatase A appears to be the major, if not the only, ascorbic acid-2-sulfate sulfohydrolase.  相似文献   

18.
Abstract

Metabolism of the epidermal growth factor (EGF) receptor was studied in the MDA-MB-231 human breast cancer cell line. As in normal fibroblasts the EGF receptor from MDA-MB-231 cells was synthesized from a Mr =160,000 precursor and tunicamycin treatment of cells resulted in accumulation of a Mr =130,000 polypeptide. Unlike normal fibroblasts in which a Mr =170,000 mature form of the EGF receptor was found, MDA-MB-231 cells contained a Mr =172,000 mature form. Addition of EGF to MDA-MB-231 cells led to rapid internalization of EGF receptors, however, internalization did not affect receptor half-life and receptors did not recycle to the cell surface. EGF receptors could be visualized by immunofluorescence and remained sequestered in intracellular membranous structures following internalization. EGF was degraded slowly by MDA-MB-231 cells relative to degradation of EGF by normal cells. A high endogenous level of in vivo phosphorylation of threonine 654 of the EGF receptor was found in MDA-MB-231 cells and treatment of cells with 12-0-tetradecanoyl-phorbol-13-acetate (TPA) further stimulated phosphorylation of this residue. EGF induced receptor internalization resulted in dephosphorylation of threonine 654. The significance of these unusual properties of EGF receptor metabolism in MDA-MB-231 cells is discussed.  相似文献   

19.
In this report we describe a method to purify both normal and abnormal (inactive) arylsulfatase A. The abnormal enzyme protein was isolated both from cases of late infantile and early juvenile forms of metachromatic leukodystrophy. Conventional protein isolation methods reported earlier were followed by size exclusion high-performance liquid chromatography in the final purification stages. Both the mutant enzyme and the normal enzyme had the same HPLC elution behavior. They thus appeared to self-associate in a similar pH-dependent fashion. Both could be followed by their reaction to a rabbit antibody to normal human arylsulfatase A. The amount of homogenous protein obtained from about 500 grams of liver was 300-400 micrograms.  相似文献   

20.
Summary Arylsulfatase A (ASA) is a lysosomal enzyme that hydrolyzes sulfatide. Absence of ASA activity leads to metachromatic leukodystrophy (MLD). The clinical outcome resulting from ASA deficiency is highly variable with respect to age of onset and symptoms. So far the causes for the variability are poorly understood. We have studied the relationship between the ASA genotype and the clinical phenotype. Fibroblasts from a total of 34 subjects with low ASA activity were examined with immunoblotting, a sensitive ASA assay, and the sulfatide loading test in order to characterize low ASA activity further. By these methods, three different classes of ASA deficiency can be defined: homozygosity for the pseudodeficiency allele (ASAP), compound heterozygosity for the ASAP and MLD (ASA) alleles, and ASA/ ASA genotypes. These genotypes exhibit different levels of ASA residual activity. Only ASA/ASA genotypes are associated with MLD. For diagnostic purposes, however, the differentiation of the various ASA genotypes is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号