首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Dose-dependent neurotoxic effects (decrease in the amplitude of field potentials generated by neurons of the СА1 area, dentate gyrus, and dorsal striatum, but not by neurons of layers ІІ and ІІІ of the parietal cortex, recorded in slices of the rat brain) were observed 24 h after i.p. injection оf dexamethasone in doses of 7 and 20 mg/kg. Dexamethasone-induced decreases in the reactivity of glutamatergic synapses in the studied cerebral structures were weakened by a noncompetitive blocker of NMDA receptors, ketamine (30 mg/kg), and an inhibitor of tyrosine protein phosphatases, sodium vanadate (15 mg/kg), if the latter agent was injected 6 h after dexamethasone administration. The neurotoxic effect of dexamethasone was intensified by a coagonist of NMDA receptors, glycine (50 mg/kg), as well as in the case where injections of dexamethasone were combined with single injections of the antidepressant fluoxetine (20 mg/kg) but not when another antidepressant, pyrazidol, was injected in the same dose. Chronic (two weeks) injections of fluoxetine and pyrazidol weakened manifestations of dexamethasone neurotoxicity. On-regulation of NMDA receptors and suppression of expression of neurotrophins are considered probable mechanisms underlying neurotoxicity of this hormone. The effect of chronic injections of antidepressants on the respective processes is discussed. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 312–231, July–August, 2008.  相似文献   

2.
We examined the actions of 5- or 7.5-min-long episodes of oxygen/glucose deprivation, OGD (temperature, 37°C), on pyramidal neurons of the CA1 hippocampal area and granular neurons of the gyrus dentatus. The respective damage to these neurons was manifested as an irreversible decrease in the amplitude of field EPSPs developing in such neuronal populations. Antagonists of NMDA receptors, D-2-amino-5 phosphonovaleric acid (50 μM), ketamine (50 μM), and compound TSB 24.15 (10 μM), demonstrated neuroprotective activities under these conditions, but only in the case of the 5-min-long exposure to OGD. A blocker of AMPAreceptors, DNQX (10 μM), combined with a local anesthetic, lidocaine hydrochloride (50 μM), induced comparable effects at the 7.5-min-long exposure. A blocker of calcium channels, verapamil (20 μM), exerted no effect on the level of injury of the neurons induced by the OGD influence. An inhibitor of tyrosine phosphoprotein phosphatases, sodium orthovanadate (15 mg/ml), demonstrated protective activities at both exposures, 5 and 7.5 min long. Chronic (during two weeks) preliminary injections of imipramine, fluoxetine, and pyridazol (everyday doses 20 mg/kg) into experimental animals resulted in noticeable weakening of the OGD-induced impairments of hippocapmal slices in the case of both exposures used, 5 and 7.5 min. The neuroprotective effects of chronically introduced antidepressants were augmented under the action of sodium orthovanadate. It is supposed that neuroprotective actions of preliminarily chronically introduced antidepressants with respect to the anoxic damage to hippocampal neurons is determined (at least to a considerable extent) by intensification of expression of neurotrophins. Under the influence of the latter, the functional activity of NMDA receptors decreases, and consequences of OGD-induced increase in the intracellular Ca2+ concentration are weakened.  相似文献   

3.
It was established in experiments on murine hippocampal slices that low-frequency (1 sec−1, 15 min) stimulation of the Schaffer collaterals applied 45 to 60 min after their high-frequency repetitive stimulation (60 sec−1, 0.5 sec) results, in 2/3 of the slices, in reduction of the amplitude of population EPSP recorded from pyramidal neurons of theCA1 area, almost to its level before high-frequency stimulation. Depotentiation was practically completely prevented by application of a non-competitive blocker of NMDA glutamate receptors (GR), ketamine (100 μM), was weakened by a blocker of voltage-dependent L-type Ca2+ channels, nifedipine (10 μM), and remained significant after a competitive blocker of the AMPA/kainate receptors, CNQX (10 μM), had been applied to the slices. Depotentiation was significantly reduced by 10 μM of a calmodulin inhibitor, trifluoroperazine, by an increase in the intracellular cAMP concentration caused by activation of A2-adenosine receptors and D5-dopamine receptors, but was resistant to the action of 50 μM of a protein kinase C (PKC) inhibitor, polymixin B. Nootropic compounds possessing anti-amnestic activity enhanced the depotentiation. It is suggested that depotentiation is due to an increase in the intracellular Ca2+ concentration, activation of protein phosphatases, and dephosphorylation of pre- and post-synaptic substrates involved in the expression of long-term post-tetanic potentiation of synaptic transmission, which result from cooperative activation of NMDA GR and metabotropic GR.  相似文献   

4.
In experiments on slices of the rat hippocampus, glycine (Gly) and serine (Ser) in concentrations of 100 μM to I mM were found to reversible increase the amplitudes of population EPSP (pEPSP) in pyramidal neurons of theCA1 hippocampal area, evoked by single electrical stimuli applied to Schaffer collaterals (SchC). This potentiation was not affected by 100 μM of a non-competetive antagonist of NMDA glutamate receptors (GR), ketamine, but was considerably weakened by 500 μM of a competitive antagonist of metabotropic GR (mGR), (±)-4-carboxyphenylglycine (CFG). The effects of Gly and Ser were not observed in the presence of 50 μM of a blocker of protein kinase C (PKC) catalytic subunit, polymixin B, but were not modified by preliminary action on the slices of 10 μM of a calmodulin inhibitor, substance W-7. Gly and Ser also enhanced long-term post-tetanic potentiation (LTPP) of synaptic transmission caused by high-frequency rhythmic stimulation of SchC. Low-frequency (1/sec, 15 min) SchC stimulation abolished the potentiation of synaptic transmission evoked either by high-frequency SchC stimulation or by the actions of Gly and Ser. The data allow us to suggest that Gly and Ser in millimolar concentrations activate mGR, enhance relay functions of the synapses of pyramidal neurons in theCA1 hippocampal region, and facilitate plastic modifications in these synapses.  相似文献   

5.
In experiments performed on rat transversial slices of the rat dorsal hippocampus, we found that high-frequency tetanic stimulation of the mossy fibers (MF) and short-term action of 1 μM kainic acid on the slices resulted in long-term potentiation of the population spikes evoked inCA3 pyramidal neurons by single stimuli applied to the MF. The tetanus-and kainate-induced potentiations of synaptic transmission were accompanied by a decrease in the degree of paired facilitation at a 50-msec-long interstimulus interval; they were additive, prevented by 10 μM CNQX, a competitive antagonist of AMPA/kainate receptors, and insensitive to 100 μM ketamine, a noncompetitive antagonist of NMDA-glutamate receptors. Both types of potentiation were enhanced by 10 μM (1S, 3R)-ACPD, an agonist of metabotropic glutamate receptors, as well as by 1 μM pyracetam or 50 μM dichlothiazide, substances weakening AMPA/kainate receptor desensitization. The effects produced by high-frequency tetanic stimulation of the MF and by kainic acid were prevented by 50 μM polymixin B, a protein kinase C blocker, and weakened by 10 μM trifluoroperazine, a calmodulin inhibitor, or 1 μM pirenzepine, an M1 acetylcholine receptor blocking agent. In total, the above data suggest that the tetanus- and kainate-induced potentiations of transmission in the synapses formed by the MF and dendrites ofCA3 pyramidal neurons are due to the combined activation of pre-synaptic high-affinity kainate-preferring receptors, located in the membranes of the MF varicosities, and post-synaptic phosphoinositide metabolism-coupled metabotropic glutamate receptors and 1 and M1 acetylcholine receptors. This activation results in a significant increase in the activity of epsilon-form protein kinase C, phosphorylation of protein substrates involved in vesicular glutamate release from the MF varicosities, and long-term enhancement of presynaptic glutamate release.  相似文献   

6.
Hydroxysafflor yellow A (HSYA) is a component of the flower Carthamus tinctorius L. that elicits neuroprotective effects in vivo and in vitro. The purpose of this study was to investigate pharmacological properties of HSYA on neurotoxicity of glutamate in primary cultured rat cortical neurons along with its possible mechanism of action. After challenge with N-methyl-d-aspartate (NMDA, 100 μM) for 30 min, loss of cell viability and excessive apoptotic cell death were observed in cultured cortical neurons. However, the excitotoxic neuronal death was attenuated markedly by HSYA treatment. Western blot analysis revealed that HSYA decreased expression of Bax and rescued the balance of pro-and anti-apoptotic proteins. In addition, HSYA significantly reversed up-regulation of NR2B-containing NMDA receptors by exposure to NMDA, while it did not affect the expression of NR2A-containing NMDA receptors. These finding suggest that HSYA protects cortical neurons, at least partially, from inhibiting the expression NR2B-containing NMDA receptors and by regulating Bcl-2 family.  相似文献   

7.
As is known, an increase in the concentration of Са2+ in the nuclei of nerve cells leads to activation of genes responsible for the formation of long-lasting postsynaptic changes; mechanisms of memory and learning are based on such changes. The pathways necessary for the entry of calcium into the nuclei of hippocampal pyramidal neurons remained unstudied. Using a patch-clamp technique, we studied what types of calcium channels exist in the membranes of isolated nuclei of pyramidal neurons of the hippocampal СА1 area. In the inner nuclear membrane of these cells, we, for the first time, found inositol trisphosphate receptors (IP3Rs) activated by inositol trisphosphate applied in the concentration of ≥0.1 μM. The conductivity of single channels of such receptors was, on average, 366 pS; these channels were permeable for both monovalent and bivalent cations. Our data indicate that the nuclear envelope of pyramidal neurons of the hippocampal СА1 area can play the role of the calcium store from which Са2+ enter the cell nucleus directly. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 288–292, July–August, 2008.  相似文献   

8.
In experiments on transversal slices of the dorsal hippocampus of rats, we found that low-frequency stimulation of the mossy fibers (MF) against the background of pre-settled long-term post-tetanic potentiation in the MF-CA3 pyramidal neuron (PN) dendrites synaptic system evoked depotentiation in all studied slices. Depotentiation was considerably decreased by a non-competitive blocker of the NMDA glutamate receptors, ketamine (100 μM), as well as by an inhibitor of calmodulin, trifluoroperazine (10 μM), and an inhibitor of calcineurin, cyclosporin A (250 μM). At the same time, depontentiation was not changed by 50 μM polymixin B, an inhibitor of protein kinase C. Long-term potentiation of synaptic transmission in the Schaffer collaterals (SchC)-CA1 PN dendrites system, which was evoked by 2.5-min-long anoxia/aglycemia episodes, resulted exclusively from enhancement of the NMDA component of population EPSP, while their AMPA component was not modified, i.e., in this case potentiation was of a postsynaptic nature. Under these conditions, low-frequency stimulation of SchC resulted in a further increase in the intensity of synaptic transmission due to increases in both the NMDA and AMPA components of population EPSP. The above form of potentiation could be suppressed by 100 μM ketamine, 10 μM trifuoroperazine, 250 μM cyclosporin A, or 10 μM N-nitro-L-arginine. Weak (near-threshold) high-frequency stimulation of SchC induced long-lasting potentiation of synaptic transmission due to an isolated increase in the AMPA component of population EPSP, i.e., this potentiation was of a postsynaptic nature. In the latter case, low-frequency SchC stimulation resulted in further facilitation of synaptic transmission. Intensive tetanic high-frequency stimulation of the above fibers induced long-term potentiation of a presynaptic nature, while their low-frequency stimulation depotentiated synaptic transmission.  相似文献   

9.
Acetylcholinesterase (AChE) inhibitor donepezil is widely used for the treatment of Alzheimer’s disease (AD). The mechanisms of therapeutic effects of the drug are not well understood. The ability of donepezil to reverse a known pathogenic effect of β-amyloid peptide (Abeta), namely, the impairment of hippocampal long-term potentiation (LTP), was not studied yet. The goal of the present study was to study the influence of donepezil in 0.1–10 μM concentrations on control and Abeta-impaired hippocampal LTP. Possible involvement of N-methyl-d-aspartate receptors (NMDARs) into mechanisms of donepezil action was also studied. LTP of population spike (PS) was studied in the CA1 region of rat hippocampal slices. Change of LTP by donepezil treatment had a bell-shaped dose–response curve. The drug in concentrations of 0.1 and 1 μM did not change LTP while in concentration of 0.5 μM significantly increased it, and in concentration of 5 and 10 μM suppressed LTP partially or completely. Abeta (200 nM) markedly suppressed LTP. Addition of 0.1, 0.5 or 1 μM donepezil to Abeta solution caused a restoration of LTP. N-methyl-d-aspartate (NMDA) currents were studied in acutely isolated pyramidal neurons from CA1 region of rat hippocampus. Neither Abeta, nor 0.5 μM donepezil were found to change NMDA currents, while 10 μM donepezil rapidly and reversibly depressed it. Results suggest that donepezil augments control and impaired by Abeta hippocampal LTP in NMDAR-independent manner. In general, our findings extend the understanding of mechanisms of therapeutic action of donepezil, especially at an early stage of AD, and maybe taken into account while considering the possibility of donepezil overdose.  相似文献   

10.
Low-frequency tetanic stimulation (2 sec-1, 5 min) of Schaffer collaterals (SchC) in superfused slices of the dorsal hippocampus of 12- to 15-day-old rats was demonstrated to evoke homosynaptic long-lasting depression (LLD) of synaptic transmission. The same procedure applied to hippocampal slices of mature (8-week-old or older) rats failed to elicit LLD. Low-frequency tetanic stimulation of the alveus in hippocampal slices, applied under conditions of intensified NMDA glutamate receptor functioning, led to the development of heterosynaptic LLD of synaptic transmission in the SchC–dendrites of the CA1 pyramidal neurons system. Both LLD cases were either absent or weakened when hippocampal slices were treated with a competitive blocker of the NMDA glutamate receptors, D-2-amino-5-phosphonovalerate (50 M). Morphine hydrochloride (10 M), as well as inhibitors of calmodulin and calcineurin (trifluoroperasine and cyclosporin A in concentrations of 1 and 50 M, respectively), interfered with induction of LLD or decreased its intensity. A blocker of the L-type voltage-dependent Ca2+ channels, nifedipine (10 M), did not influence homosynaptic LLD, but decreased heterosynaptic depression. Both types of depression of synaptic transmission were facilitated upon application of substances possessing a nootropic activity, 1 mM pyracetam or 5 M carbacetam. A blocker of NO synthase, N-nitro-L-arginine (10 M) did not alter either type of LLD. When hippocampal slices were influenced with a blocker of the A1 adenosine receptors, 1,3-dipropyl-8-phenylxanthine (1 M, 15 min), both LLD forms were intensified, and the development of homosynaptic LLD of synaptic transmission became possible in hippocampal slices of mature rats. When hippocampal slices were treated with an inhibitor of protein kinase C, polymyxin B (50 M, 15 min), intensification of LLD and, in particular, the development of homosynaptic LLD of synaptic transmission were observed. When an inhibitor of phospholipase A2, mepacrine (25 M, 15 min), was applied to hippocampal slices, both forms of LLD of synaptic transmission were significantly suppressed.  相似文献   

11.
Summary It is known that estrogen can protect neurons from excitotoxicity. Since isoflavones possess estrogen-like activity, it is of interest to determine whether isoflavones can also protect neurons from glutamate-induced neuronal injury. Morphological observation and lactate dehydrogenase (LDH) release assay were used to estimate the cellular damage. It is surprising that, contrary to estrogen, isoflavones, specifically genistein and daidzein, are toxic to primary neuronal culture at high concentration. Treatment of neurons with 50 μM genistein and daidzein for 24 h increased LDH release by 90% and 67%, respectively, indicating a significant cellular damage. Under the same conditions, estrogen such as 17β-estradiol did not show any effect on primary culture of brain cells. At 100 μM, both genistein and daidzein increased LDH release by 2.6- and 3-fold, respectively with a 30-min incubation. Furthermore, both genistein and daidzein at 50 μM increased the intracellular calcium level, [Ca2+]i, significantly. To determine their mode of action, genistein and daidzein were tested on glutamate and GABAA receptor binding. Both genistein and daidzein were found to have little effect on glutamate receptor binding, while the binding of [3H]muscimol to GABAA receptors was markedly inhibited. However, 17β-estradiol did not affect GABAA receptor binding suggesting that the toxic effect of genistein and daidzein could be due to their inhibition of the GABAA receptor resulting in further enhancement of excitation by glutamate and leading to cellular damage. Ying Jin, Heng Wu contributed equally to this article.  相似文献   

12.
The dynamics of changes in the frequency of the respiratory activity recorded from the n. phrenicus under conditions of 3-min-long applications of 5 μM N-methyl-D-aspartate (NMDA), an anoxic gas mixture-saturated saline, or an acidified (pH 7.0) solution were studied in the experiments on superfusedin situ semi-isolated medullo-spinal preparations (SIMSP) of 3- to 4-day-old rats. Test applications were performed on the intact SIMSP or on those preliminarily influenced by the following substances: a non-competitive NMDA receptor blocker, ketamine (10 μM); an inhibitor of NO synthase, methyl ester of NG-nitro-L-arginine (MENA, l0 μM); hemoglobin, which binds NO (Hb, 0.3 μM); an NO donor, sodium nitroprusside (SNP, 10 μM); or/and a competitive blocker of non-NMDA receptors, CNQX (1.0 μM). Application of NMDA increased the frequency of the respiratory discharges, and the effect was blocked by MENA, Hb, and SNP. Addition of Hb to the SNP-containing solution neutralized the effect of the latter. In hypoxia, ketamine blocked an increase in the respiratory frequency within the initial 90-sec segment of the test and decreased the rhythm suppression within the second test half. MENA increased the respiration discharge frequency throughout the test. CNQX exerted no Influence on the frequency in the initial period and decreased its suppression within the second test half. Preliminary ketamine and MENA applications made smaller the increment of the discharge frequency at application of the solution with pH 7.0; the MENA effect was stronger. In addition, using a histochemical technique, we studied spatial distribution of the neurons containing an NO synthase marker, NADPH-diaphorase (NADPH-d), in frontal sections of the medulla of 4-day-old rats. NADPH-d-positive cells were observed within the limits of the dorsal and ventral respiratory neuronal groups (DRG and VRG, respectively). Their density was the highest in the rostral VRG part (in the region of the lateral paragigantocellular nucleus). Our results show that in early postnatal rats NMDA receptors and endogenous NO are actively involved in the control of respiratory rhythm generated by SIMSP under hypoxic and acidotic conditions. The results of morphohistochemical study can be considered a neuroanatomical support for the active NO role in the control of medullary respiratory rhythm in the early postnatal period.  相似文献   

13.
N-Methyl-D-aspartate receptors (NMDARs) are essential mediators of synaptic plasticity under normal physiological conditions. During brain ischemia, these receptors are excessively activated due to glutamate overflow and mediate excitotoxic cell death. Although organotypical hippocampal slice cultures are widely used to study brain ischemia in vitro by induction of oxygen and glucose deprivation (OGD), there is scant data regarding expression and functionality of NMDARs in such slice cultures. Here, we have evaluated the contribution of NMDARs in mediating excitotoxic cell death after exposure to NMDA or OGD in organotypical hippocampal slice cultures after 14 days in vitro (DIV14). We found that all NMDAR subunits were expressed at DIV14. The NMDARs were functional and contributed to cell death, as evidenced by use of the NMDAR antagonist MK-801 (dizocilpine). Excitotoxic cell death induced by NMDA could be fully antagonized by 10 μM MK-801, a dose that offered only partial protection against OGD-induced cell death. Very high concentrations of MK-801 (50–100 μM) were required to counteract cell death at long delays (48–72 h) after OGD. The relative high dose of MK-801 needed for long-term protection after OGD could not be attributed to down-regulation of NMDARs at the gene expression level. Our data indicate that NMDAR signaling is just one of several mechanisms underlying ischemic cell death and that prospective cytoprotective therapies must be directed to multiple targets.  相似文献   

14.
We have previously described that α-ketoisocaproic acid (KIC), the main metabolite accumulating in maple syrup urine disease (MSUD), increased the in vitro phosphorylation of cytoskeletal proteins in cerebral cortex of 17- and 21-day-old rats through NMDA glutamatergic receptors. In the present study we investigated the protein kinases involved in the effects of KIC on the phosphorylating system associated with the cytoskeletal fraction and provided an insight on the mechanisms involved in such effects. Results showed that 1 mM KIC increased the in vitro incorporation of 32P into intermediate filament (IF) proteins in slices of 21-day-old rats at shorter incubation times (5 min) than previously reported. Furthermore, this effect was prevented by 10 μM KN-93 and 10 μM H-89, indicating that KIC treatment increased Ca2+/calmodulin- (PKCaMII) and cAMP- (PKA) dependent protein kinases activities, respectively. Nifedipine (100 μM), a blocker of voltage-dependent calcium channels (VDCC), DL-AP5 (100 μM), a NMDA glutamate receptor antagonist and BAPTA-AM (50 μM), a potent intracellular Ca2+ chelator, were also able to prevent KIC-induced increase of in vitro phosphorylation of IF proteins. In addition, KIC treatment was able to significantly increase the intracellular cAMP levels. This data support the view that KIC increased the activity of the second messenger-dependent protein kinases PKCaMII and PKA through intracellular Ca2+ levels. Considering that hyperphosphorylation of cytoskeletal proteins is related to neurodegeneration it is presumed that the Ca2+-dependent hyperphosphorylation of IF proteins caused by KIC may be involved to the neuropathology of MSUD patients.  相似文献   

15.
Calcium overload of neurons leads to cell death and is a key feature in neurodegenerative diseases. The polycyclic amine NGP1-01 blocks L-type voltage operated calcium channels in cardiomyocytes. Here, we tested whether NGP1-01 blocks neuronal calcium channels. NGP1-01 (1 μM) inhibited depolarization-induced calcium influx by 78% in cortical neurons preloaded with fura-2 AM, with a potency similar to nimodipine. NGP1-01 (1 μM) also inhibited N-methyl-d-aspartate (NMDA)-induced (1 mM) calcium influx by 52%, only slightly less potent than memantine. Using in vivo-microdialysis, we monitored choline release during NMDA infusion as a measure of excitotoxic membrane breakdown. Intraperitoneal injection of NGP1-01 (40 mg/kg) reduced NMDA-induced membrane breakdown by 31% (P<0.01) while memantine (10 mg/kg) reduced choline release by 40%. Our results demonstrate that NGP1-01 simultaneously blocks both major neuronal calcium channels and is sufficiently brain-permeable. We conclude that NGP1-01 is a promising lead structure for a new class of dual-mechanism neuroprotective agents.  相似文献   

16.
Effects of a non-competetive blocker of glutamate NMDA receptors, ketamine, on respiratory activity recorded from the phrenic nerve were studied in experiments on superfusedin situ semi-isolated medullo-spinal preparations (SIMSP) of 3− to 4-day-old rats. The experiments were carried out under conditions where the ventrolateral medullary region (VLM) was left intact, or its rostral portion (projectionally corresponding to the chemosensitiveM zone) was separated by transection. Three-min-long application of 1.0 μM ketamine evoked a slight increase in the duration of inspiratory discharges (ID) and a statistically significant increase in their frequency. After the rostral VLM had been separated, similar ketamine application resulted in significant increases in the duration, amplitude, and integral intensity of ID and some drop in their frequency. An increase to 10 μM ketamine concentration in the superfusing solution determined a significant rise of the ID duration, which indicates the possibility of inhibition of the mechanisms switching inspiration to expiration. Concurrently, the ID frequency significantly dropped, while their amplitude and integral intensity increased. After separation of the rostral VLM, the latter ketamine concentration ceased to increase the ID duration, and their frequency and amplitude significantly dropped. Application of ketamine in the concentration of 100 μM resulted in rather profound decreases of all measured ID parameters, and separation of the rostral VLM exerted no influence on the direction of the above modifications. Thus, we obtained evidence of the involvement of NMDA receptors of the VLM in the control of temporal and frequency-amplitude parameters of respiratory activity of early postnatal rats. Possible localization of NMDA receptors and mechanisms of their involvement in inspiration-expiration switching and tonic inhibitory control of respiratory rhythms are discussed.  相似文献   

17.
We have previously shown that monoamine uptake blocker-type antidepressants with different chemical structure and selectivity are able to inhibit neuronal nicotinic acetylcholine receptors (nAChRs) in concentrations observed during antidepressant treatment. The mechanism of action of these drugs is similar to that of mecamylamine, a channel blocker-type antagonist of nAChRs. Since mecamylamine has been shown to block also NMDA receptors, our aim was to investigate whether the monoamine uptake blockers may affect the function of these ionotropic glutamate receptors.We studied, therefore the effect of the two most potent nicotinic antagonist antidepressants, the tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine on the NMDA-induced [3H]noradrenaline ([3H]NA) release from rat hippocampal slices. The NMDA-induced hippocampal [3H]NA release was effectively blocked by the selective, non-competitive NMDA antagonist MK-801 (IC50 = 0.54 μM), indicating that the [3H]NA release was mediated through NMDA receptors. This response was also dose-dependently inhibited by desipramine (IC50 = 14.57 μM) and fluoxetine (IC50 = 41.06 μM). The Na+-channel blocker TTX equally inhibited both the electrical stimulation- and the NMDA-evoked [3H]NA release (the IC50 was 55 nM and 66 nM, respectively), whereas the antidepressants inhibited only the NMDA-evoked response. These data suggest that the inhibitory effect of fluoxetine and desipramine on the NMDA-evoked [3H]NA release is exerted directly on NMDA receptors rather than indirectly on Na+-channels.Due to accumulation processes the concentration of desipramine and fluoxetine in the brain might be in the same range as the observed IC50 values, thus our data indicate that monoamine uptake blocker-type antidepressants are able to influence the function of NMDA receptors during antidepressant treatment, and the inhibitory effect on NMDA receptors might contribute to the therapeutic effects of these drugs.  相似文献   

18.
Abstract: l -Deprenyl is a relatively selective inhibitor of monoamine oxidase (MAO)-B that delays the emergence of disability and the progression of signs and symptoms of Parkinson's disease. Experimentally, deprenyl has also been shown to prevent neuronal cell death in various models through a mechanism that is independent of MAO-B inhibition. We examined the effect of deprenyl on cultured mesencephalic dopamine neurons subjected to daily changes of feeding medium, an experimental paradigm that causes neuronal death associated with activation of the NMDA subtype of glutamate receptors. Both deprenyl (0.5–50 µ M ) and the NMDA receptor blocker MK-801 (10 µ M ) protected dopamine neurons from damage caused by medium changes. The nonselective MAO inhibitor pargyline (0.5–50 µ M ) was not protective, indicating that protection by deprenyl was not due to MAO inhibition. Deprenyl (50 µ M ) also protected dopamine neurons from delayed neurotoxicity caused by exposure to NMDA. Because deprenyl had no inhibitory effect on NMDA receptor binding, it is likely that deprenyl protects from events occurring downstream from activation of glutamate receptors. As excitotoxic injury has been implicated in neurodegeneration, it is possible that deprenyl exerts its beneficial effects in Parkinson's disease by suppressing excitotoxic damage.  相似文献   

19.
The action of ginkgolide B (GB), a powerful compound of Ginkgo biloba extract, on glycine-mediated spontaneous currents in rat spinal sacral dorsal commissural nucleus (SDCN) neurons was examined. IPSCs evoked in spinal cord slices were inhibited in a dose-dependent manner by the addition of GB to the superfusion solution. The amplitude of eIPSCs was reduced to 61 ± 6.4% by 10 μM GB with acceleration of the kinetics of the currents, indicating the effect of GB on channel pores. Both the amplitude and success ratio (Rsuc) of eIPSC induced by electrical focal stimulation of single glycinergic nerve endings (boutons) also changed in the presence of 1 μM GB. These data suggest that GB modulates not only post-synaptic glycine receptors but also the pre-synaptic glycine release machinery.  相似文献   

20.
The effects of voltage-operated potassium channel blockers on evoked excitatory synaptic transmission were studied in theCA1 subfield of rat hippocampal slices. Incubation with 50 μM 4-aminopyridine (n=27), 300 nM α-dendrotoxin (n=3), or 5 to 25 mM tetraethylammonium (n=7) resulted in an enhancement of the peak amplitude of excitatory postsynaptic currents (EPSC) and significant prolongation of their decay at strong stimuli, due to an increased contribution of NMDA receptors into EPSC. In five experiments, the presence of an AMPA receptor antagonist, 4-aminopyridine, led to the appearance of NMDA receptor-mediated field excitatory postsynaptic potentials (fEPSP). It is suggested that various modulations increasing presynaptic Ca2+ entry and, consequently, glutamate release may increase an NMDA component of synaptic transmission via excitation of polysynaptic excitatory pathways and/or due to glutamate spillover to distant extrasynaptic NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号