首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In articular cartilage, type VI collagen is concentrated in the pericellular matrix compartment. During protein synthesis and processing at least the alpha3(VI) chain undergoes significant posttranslational modification and cleavage. In this study, we investigated the processing of type VI collagen in articular cartilage. Immunostaining with a specific polyclonal antiserum against the C5 domain of alpha3(VI) showed strong cellular staining seen in nearly all chondrocytes of articular cartilage. Confocal laser-scanning microscopy and immunoelectron microscopy allowed localization of this staining mainly to the cytoplasm and the immediate pericellular matrix. Double-labeling experiments showed a narrow overlap of the C5 domain and the pericellular mature type VI collagen. Our results suggest that at least in human adult articular cartilage the C5 domain of alpha3(VI) collagen is synthesized and initially incorporated into the newly formed type VI collagen fibrils, but immediately after secretion is cut off and is not present in the mature pericellular type VI matrix of articular cartilage.  相似文献   

2.
The role of the chondrocyte pericellular matrix (PCM) was examined in a three-dimensional chondrocyte culture system to determine whether retention of the native pericellular matrix could stimulate collagen and proteoglycan accumulation and also promote the formation of a mechanically functional hyaline-like neocartilage. Porcine chondrocytes and chondrons, consisting of the chondrocyte with its intact pericellular matrix, were maintained in pellet culture for up to 12 weeks. Sulfated glycosaminoclycans and type II collagen were measured biochemically. Immunocytochemistry was used to examine collagen localization as well as cell distribution within the pellets. In addition, the equilibrium compressive moduli of developing pellets were measured to determine whether matrix deposition contributed to the mechanical stiffness of the cartilage constructs. Pellets increased in size and weight over a 6-week period without apparent cell proliferation. Although chondrocytes quickly rebuilt a PCM rich in type VI collagen, chondron pellets accumulated significantly more proteoglycan and type II collagen than did chondrocyte pellets, indicating a greater positive effect of the native PCM. After 5 weeks in chondron pellets, matrix remodeling was evident by microscopy. Cells that had been uniformly distributed throughout the pellets began to cluster between large areas of interterritorial matrix rich in type II collagen. After 12 weeks, clusters were stacked in columns. A rapid increase in compressive strength was observed between 1 and 3 weeks in culture for both chondron and chondrocyte pellets and, by 6 weeks, both had achieved 25% of the equilibrium compressive stiffness of cartilage explants. Retention of the in vivo PCM during chondrocyte isolation promotes the formation of a mechanically functional neocartilage construct, suitable for modeling the responses of articular cartilage to chemical stimuli or mechanical compression.  相似文献   

3.
The interaction of the cell with its surrounding extracellular matrix (ECM) has a major effect on cell metabolism. We have previously shown that chondrons, chondrocytes with their in vivo-formed pericellular matrix, can be enzymatically isolated from articular cartilage. To study the effect of the native chondrocyte pericellular matrix on ECM production and assembly, chondrons were compared with chondrocytes isolated without any pericellular matrix. Immediately after isolation from human cartilage, chondrons and chondrocytes were centrifuged into pellets and cultured. Chondron pellets had a greater increase in weight over 8 weeks, were more hyaline appearing, and had more type II collagen deposition and assembly than chondrocyte pellets. Minimal type I procollagen immunofluorescence was detected for both chondron and chondrocyte pellets. Chondron pellets had a 10-fold increase in proteoglycan content compared with a six-fold increase for chondrocyte pellets over 8 weeks (P<0.0001). There was no significant cell division for either chondron or chondrocyte pellets. The majority of cells within both chondron and chondrocyte pellets maintained their polygonal or rounded shape except for a thin, superficial edging of flattened cells. This edging was similar to a perichondrium with abundant type I collagen and fibronectin, and decreased type II collagen and proteoglycan content compared with the remainder of the pellet. This study demonstrates that the native pericellular matrix promotes matrix production and assembly in vitro. Further, the continued matrix production and assembly throughout the 8-week culture period make chondron pellet cultures valuable as a hyaline-like cartilage model in vitro.  相似文献   

4.
Rabbit articular cartilage slices were grown in organ culture for 9 weeks. Eightfold increases in the synthesis of both glycosaminoglycan and collagen were observed at 1 and 3 weeks, respectively. These levels of synthesis gradually declined in parallel to fourfold at 9 weeks. DNA synthesis was stimulated more than 30-fold at 3 weeks and then declined to sevenfold at 9 weeks. In contrast, the content of glycosaminoglycans and collagen per milligram of original wet slices did not vary significantly, while the number of cells increased 1.7-fold by the end of the study. The collagen phenotype of these cultures was determined by sodium dodecyl sulfate electrophoresis of recently synthesized, [3H]proline-labeled intact collagen chains and CNBr peptides. Throughout the study the major collagen synthesized was type II, ranging from 95 to 68% of the collagen synthesized at 0 and 5 weeks, respectively. Increases in the proportions of X2Y and type III collagen were first observed at 3 weeks in culture. The synthesis of type I collagen was detected only after 5 weeks in culture and never represented more than 11% of the total collagen synthesized. The synthesis of type I trimer could not be verified at any time. This study demonstrates that in vitro organ culture of articular cartilage slices allows chondrocytes to maintain the normal chondrocyte collagen phenotype of predominantly type II synthesis while stimulating their proliferation and matrix synthesis.  相似文献   

5.
Summary Chondrocytes, each with their pericellular matrix bounded by a fibrous capsule, can be extracted singly or in groups from both mature pig articular cartilage and chondrosarcoma tissue. These structures, termed chondrons, are thought to anchor the chondrocytes in the matrix and protect them from the compressive forces experienced when articular cartilage is under load. The capsule of these chondrons contains both type II and type IX collagens and is composed of fine fibrillar material, unlike the large banded fibres of type II collagen found in the rest of the matrix. This suggests a rote for type IX collagen in regulating the diameter of type II fibres to produce the fine fibrillar structure of the chondron capsules.  相似文献   

6.
In osteoarthritic cartilage, chondrocytes are able to present heterogeneous cellular reactions with expression and synthesis of the (pro)collagen types characteristic of prechondrocytes (type IIA), hypertrophic chondrocytes (type X), as well as differentiated (types IIB, IX, XI, VI) and dedifferentiated (types I, III) chondrocytes. The expression of type IIA procollagen in human osteoarthritic cartilage support the assumption that OA chondrocytes reverse their phenotype towards a chondroprogenitor phenotype. Recently, we have shown that dedifferentiation of mouse chondrocytes induced by subculture was associated with the alternative splicing of type II procollagen pre-mRNA with a switch from the IIB to the IIA form. In this context, we demonstrated that BMP-2 favours expression of type IIB whereas TGF-beta1 potentiates expression of type IIA induced by subculture. These data reveal the specific capability of BMP-2 to reverse the program of chondrocyte dedifferentiation. This interesting feature needs to be tested with human chondrocytes since cell amplification is required for the currently used autologous chondrocyte transplantation.  相似文献   

7.
Chondrocytes, the only cell type present in articular cartilage, regulate tissue homeostasis by a fine balance of metabolism that includes both anabolic and catabolic activities. Therefore, the biology of chondrocytes is critical for understanding cartilage metabolism. One major limitation when studying primary chondrocytes in culture is their loss of phenotype. To overcome this hurdle, limited attempts have been made to develop human chondrocyte cell lines that retain the phenotype for use as a good surrogate model. In this study, we report a novel approach to the establishment and characterization of human articular cartilage‐derived chondrocyte cell lines. Adenoviral infection followed by culture of chondrocytes in 3‐dimensional matrix within 48 h post‐infection maintained the phenotype prior to clonal selection. Cells were then placed in culture either as monolayer, or in 3‐dimensional matrix of alginate or agarose. The clones were characterized by their basal gene expression profile of chondrocyte markers. Based on type II collagen expression, 21 clones were analyzed for gene expression following treatment with IL‐1 or BMP‐7 and compared to similarly stimulated primary chondrocytes. This resulted in selection of two clones that retained the chondrocyte phenotype as evidenced by expression of type II collagen and other extra‐cellular matrix molecules. In addition, one clone (AL‐4‐17) showed similar responses as primary chondrocytes when treated with IL‐1 or BMP‐7. In summary, this report provides a novel procedure to develop human articular cartilage‐derived chondrocyte cell lines, which preserve important characteristics of articular chondrocytes and represent a useful model to study chondrocyte biology. J. Cell. Physiol. 222: 695–702, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Type II collagen is a major protein that maintains biological and mechanical characteristics in articular cartilage. Focal adhesion kinase (FAK) is known to play a central role in integrin signaling of cell–extracellular matrix (ECM) interactions, and chondrocyte–type II collagen interactions are very important for cartilage homeostasis. In this study, we focused on phosphorylation of FAK and MAP kinase in chondrocyte–type II collagen interaction and dedifferentiation, and the effects of FAK knockdown on chondrocyte‐specific gene expression and cell proliferation were determined. The addition of exogenous type II collagen to chondrocytes increased levels of tyrosine phosphorylation, p‐FAKY397, and p‐ERK1/2. In contrast, expression levels of p‐FAKY397 and p‐ERK1/2, but not p‐Smad2/3, were decreased in dedifferentiated chondrocytes with loss of type II collagen expression. Type II collagen expression was significantly increased when dedifferentiated chondrocytes were transferred to alginate beads with TGF‐β1 or type II collagen, but transfected cells with small interfering RNA for FAK (FAK‐siRNA) inhibited mRNA expression of type II collagen and SOX‐6 compared to the control. These FAK‐siRNA‐transfected cells could not recover type II collagen even in the presence of TGF‐β1 or type II collagen in alginate beads culture. We also found that FAK‐siRNA‐transfected cells decreased cell proliferation rate, but there was no effect on glycosaminoglycans (GAGs) secretion. We suggest that FAK is essentially required in chondrocyte communication with type II collagen by regulating type II collagen expression and cell proliferation. J. Cell. Physiol. 218: 623–630, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
In this study, we demonstrate that articular cartilage chondrocytes are surrounded by the defining basement membrane proteins laminin, collagen type IV, nidogen and perlecan, and suggest that these form the functional equivalent of a basement membrane. We found by real-time PCR that mouse chondrocytes express these four cardinal components of basement membranes and demonstrated by immunohistochemistry that the proteins are present in bovine and mouse cartilage tissues and are deposited in a thin pericellular structure. Immunoelectron microscopy confirmed high laminin concentration in the pericellular matrix. In cartilage from newborn mice, basement membrane components are widespread in the territorial and interterritorial matrix, while in mature cartilage of adult mice the basement membrane components are localized mainly to a narrow pericellular zone. With progression into old age, this layer becomes less distinct, especially in areas of obvious mechanical attrition. Interestingly, individual laminin subunits were located in different zones of the cartilage, with laminin alpha1 showing preferential localization around a select population of superficial layer chondrocytes. We propose that the chondrocyte, like several other cell types of mesenchymal origin, is surrounded by the functional equivalent of a basement membrane. This structure is presumably involved in maintaining chondrocyte phenotype and viability and may well allow a new understanding of cartilage development and provide clues to the progression of degenerative joint disorders.  相似文献   

10.
The pericellular matrix of articular cartilage has been shown to regulate the mechanical environment of chondrocytes. However, little is known about the mechanical role of collagen fibrils in the pericellular matrix, and how fibrils might help modulate strains acting on chondrocytes when cartilage is loaded. The primary objective was to clarify the effect of pericellular collagen fibrils on cell volume changes and strains during cartilage loading. Secondary objectives were to investigate the effects of pericellular fixed charges and fluid on cell responses. A microstructural model of articular cartilage, in which chondrocytes and pericellular matrices were represented with depth-dependent structural and morphological properties, was created. The extracellular matrix and pericellular matrices were modeled as fibril-reinforced, biphasic materials with swelling capabilities, while chondrocytes were assumed to be isotropic and biphasic with swelling properties. Collagen fibrils in the extracellular matrix were represented with an arcade-like architecture, whereas pericellular fibrils were assumed to run tangential to the cell surface. In the early stages of a stress-relaxation test, pericellular fibrils were found to sensitively affect cell volume changes, even producing a reversal from increasing to decreasing cell volume with increasing fibril stiffness in the superficial zone. Consequently, steady-state volume of the superficial zone cell decreased with increasing pericellular fibril stiffness. Volume changes in the middle and deep zone chondrocytes were smaller and opposite to those observed in the superficial zone chondrocyte. An increase in the pericellular fixed charge density reduced cell volumes substantially in every zone. The sensitivity of cell volume changes to pericellular fibril stiffness suggests that pericellular fibrils play an important, and as of yet largely neglected, role in regulating the mechanical environment of chondrocytes, possibly affecting matrix synthesis during cartilage development and degeneration, and affecting biosynthetic responses associated with articular cartilage loading.  相似文献   

11.
Type VI collagen appears central to the maintenance of tissue integrity. In adult articular cartilage, type VI collagen is preferentially localised in the chondron where it may be involved in cell attachment. In actively remodelling developing cartilage, the distribution is less certain. We have used confocal immunohistochemistry and in situ hybridisation to investigate type VI collagen distribution in third trimester bovine proximal femoral epiphyses. In general, type VI collagen immunofluorescence was concentrated in the chondrocyte pericellular matrix, with staining intensity strongest in regions which persist to maturity and weakest in regions that remodel during development. Type VI collagen was also present in cartilage canals. In the growth plate and around the secondary centre of ossification, the intensity of type VI collagen stain rapidly decreased with chondrocyte maturation and was absent at hypertrophy, except where canal branches penetrated the growth plate and stain was retained around the adjacent chondrocytes. In situ hybridisation confirmed the presence of type VI collagen mRNA in cartilage canal mesenchymal cells but the signal was low in chondrocytes, suggesting minimal levels of synthesis and turnover. The results are consistent with a role for type VI collagen in stabilising the extracellular matrix during development.  相似文献   

12.
The extracellular matrix of articular cartilage modulates the mechanical signals sensed by the chondrocytes. In the present study, a finite element model (FEM) of the chondrocyte and its microenvironment was reconstructed using the information from fourier transform infrared imaging spectroscopy. This environment consisted of pericellular, territorial (mainly proteoglycans), and inter-territorial (mainly collagen) matrices. The chondrocyte, pericellular, and territorial matrix were assumedto be mechanically isotropic and poroelastic, whereas the inter-territorial matrix, due to its high collagen content, was assumed to be transversely isotropic and poroelastic. Under instantaneous strain-controlled compression, the FEM indicated that the fluid pressure within the chondrocyte increased nonlinearly as a function of the in-plane Young’s modulus of the collagen network. Under instantaneous force-controlled compression, the chondrocyte experienced the highest fluid pressure when the in-plane Young’s modulus of the collagen network was ~4 MPa. Based on the present results, the mechanical characteristics of the collagen network of articular cartilage can modify fluid flow and stresses in chondrocytes. Therefore, the integrity of the collagen network may be an important determinant in cell stimulation and in the control of the matrix maintenance.  相似文献   

13.
Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.  相似文献   

14.
Adult articular chondrocytes are each surrounded by a heterogeneous microenvironment and together form the chondron. Since little is known of chondron development, agarose gel culture, confocal immunohistochemistry and image analysis have been used to characterize the molecular anatomy and temporal development of the chondrocyte pericellular microenvironment in vitro. Two structurally distinct domains were identified during the 12-week culture period. The first comprised a narrow glycocalyx, 1–3 ·m in width, which consolidated over time and was rich in collagen types II, VI, IX and XI, fibronectin, decorin and the aggrecan epitopes, 5D4 and HABR. The second region emerged after 4–6 weeks in culture and progressively developed a broad territorial region up to 12 ·m wide around the chondrocyte and pericellular glycocalyx. Co-localization studies confirmed the dominance of aggrecan epitopes 2B6, EFG-4, 5D4 and HABR in the territorial domain, whereas surface density mapping with NIH image revealed two patterns of staining, one punctate and stippled, the other more uniform in distribution. The pericellular differentiation identified appeared analogous to the chondrons of adult articular cartilage, and provides an appropriate in vitro model for further studies of cell surface receptor function in the orchestration of pericellular matrix assembly This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Adult articular chondrocytes are each surrounded by a heterogeneous microenvironment and together form the chondron. Since little is known of chondron development, agarose gel culture, confocal immunohistochemistry and image analysis have been used to characterize the molecular anatomy and temporal development of the chondrocyte pericellular microenvironment in vitro. Two structurally distinct domains were identified during the 12-week culture period. The first comprised a narrow glycocalyx, 1–3 ·m in width, which consolidated over time and was rich in collagen types II, VI, IX and XI, fibronectin, decorin and the aggrecan epitopes, 5D4 and HABR. The second region emerged after 4–6 weeks in culture and progressively developed a broad territorial region up to 12 ·m wide around the chondrocyte and pericellular glycocalyx. Co-localization studies confirmed the dominance of aggrecan epitopes 2B6, EFG-4, 5D4 and HABR in the territorial domain, whereas surface density mapping with NIH image revealed two patterns of staining, one punctate and stippled, the other more uniform in distribution. The pericellular differentiation identified appeared analogous to the chondrons of adult articular cartilage, and provides an appropriate in vitro model for further studies of cell surface receptor function in the orchestration of pericellular matrix assembly This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Ko AR  Huh YH  Lee HC  Song WK  Lee YS  Chun JS 《IUBMB life》2006,58(10):597-605
We have previously shown that activation of extracellular signal-regulated protein kinase-1 and -2 (ERK1/2) causes chondrocyte dedifferentiation, which contributes to the destruction of arthritic cartilage. In the present study, we identified genes involved in the ERK1/2 regulation of chondrocyte dedifferentiation. Several genes were identified by subtractive hybridization, and, of these, arginase II was selected for further functional characterization. Similar to the pattern of type II collagen expression, which is a hallmark of chondrocyte differentiation, arginase II expression was increased during chondrogenesis of mesenchymal cells. The high expression level of arginase II was decreased during dedifferentiation of chondrocytes, whereas its expression was restored during redifferentiation of the dedifferentiated chondrocytes. Inhibition of ERK1/2 signaling in chondrocytes enhanced type II collagen expression with a concomitant increase in expression and activity of arginase II. However, ectopic expression of arginase II or inhibition of its activity did not affect chondrocyte differentiation. The results collectively indicate that expression of arginase II is specific to the chondrocyte phenotype, although the expression of arginase II alone is not sufficient for articular chondrocytes to maintain a differentiated phenotype.  相似文献   

17.
Tissue engineering of articular cartilage from chondrocytes or stem cells is considered to be a potential aspect in the treatment of cartilage defects. In order to optimize culture conditions the influence of low oxygen tension (5%) - single or in combination with intermittent hydrostatic pressure (HP: 30/2 min on/off loading; 0.2 MPa) - on the biosynthetic activity (sulfate and proline incorporation) of human osteoarthritic chondrocytes cultured on collagen I/III membranes was investigated. Additionally, chondrogenesis from high density or monolayer cultures of bovine adherent bone marrow cells (aBMC) with and without chondrogenic medium supplements (CM) was analyzed by RT-PCR (mRNA expression of aggrecan and collagen type II). We could show that low oxygen tension increases significantly the biosynthesis of collagen I/III membrane-associated chondrocytes and even higher under co-stimulation with HP. While there is no chondrogenesis in monolayer cultures, CM induces expression of cartilage matrix molecules in high density cultures of aBMC which is even increased under the influence of low oxygen tension. Both, low oxygen tension and HP without CM are alone not sufficient stimuli for chondrogenesis. It can be concluded that low oxygen tension and HP might be useful tools in cartilage tissue engineering and that these physico-chemical factors promote but do not induce chondrogenesis under the given conditions.  相似文献   

18.
Articular cartilage is a specialized connective tissue containing chondrocytes embedded in a network of extracellular macromolecules such as type II collagen and presents poor capacity to self-repair. Autologous chondrocyte transplantation (ACT) is worldwide used for treatment of focal damage to articular cartilage. However, dedifferentiation of chondrocytes occurs during the long term culture necessary for mass cell production. The aim of this study was to investigate if addition of bone morphogenetic protein (BMP)-2, a strong inducer of chondrogenic expression, to human chondrocytes immediately after their isolation from cartilage, could help to maintain their chondrogenic phenotype in long-term culture conditions. Human articular chondrocytes were cultured according to the procedure used for ACT. Real-time PCR and Western blotting were performed to evaluate the cellular phenotype. Exogenous BMP-2 dramatically improves the chondrogenic character of knee articular chondrocytes amplified over two passages, as assessed by the BMP-2 stimulation on type II procollagen expression and synthesis. This study reveals that BMP-2 could potentially serve as a therapeutic agent for supporting the chondrogenic phenotype of human articular chondrocytes expanded in the conditions generally used for ACT.  相似文献   

19.
Extracellular matrix formation by chondrocytes in monolayer culture   总被引:10,自引:6,他引:4       下载免费PDF全文
In previous studies were have reported on the secretion and extracellular deposition of type II collagen and fibronectin (Dessau et al., 1978, J. Cell Biol., 79:342-355) and chondroitin sulfate proteoglycan (CSPG) (Vertel and Dorfman, 1979, Proc. Natl. Acad. Sci. U. S. A. 76:1261-1264) in chondrocyte cultures. This study describes a combined effort to compare sequence and pattern of secretion and deposition of all three macromolecules in the same chondrocyte culture experiment. By immunofluorescence labeling experiments, we demonstrate that type II collagen, fibronectin, and CSPG reappear on the cell surface after enzymatic release of chondrocytes from embryonic chick cartilage but develop different patterns in the pericellular matrix. When chondrocytes spread on the culture dish, CSPG is deposited in the extracellular space as an amorphous mass and fibronectin forms fine, intercellular strands, whereas type II collagen disappears from the chondrocyte surface and remains absent from the extracellular space in early cultures. Only after cells in the center of chondrocyte colonies shape reassume spherical shape does the immunofluorescence reveal type II collagen in the refractile matrix characteristic of differentiated cartilage. By immunofluorescence double staining of the newly formed cartilage matrix, we demonstrate that CSPG spreads farther out into the extracellular space that type II collagen. Fibronectin finally disappears from the cartilage matrix.  相似文献   

20.
To examine the role of connective tissue growth factor CCN2/CTGF (CCN2) in the maintenance of the articular cartilaginous phenotype, we analyzed knee joints from aging transgenic mice (TG) overexpressing CCN2 driven by the Col2a1 promoter. Knee joints from 3-, 14-, 40-, and 60-day-old and 5-, 12-, 18-, 21-, and 24-month-old littermates were analyzed. Ccn2-LacZ transgene expression in articular cartilage was followed by X-gal staining until 5 months of age. Overexpression of CCN2 protein was confirmed through all ages in TG articular cartilage and in growth plates. Radiographic analysis of knee joints showed a narrowing joint space and other features of osteoarthritis in 50% of WT, but not in any of the TG mice. Transgenic articular cartilage showed enhanced toluidine blue and safranin-O staining as well as chondrocyte proliferation but reduced staining for type X and I collagen and MMP-13 as compared with those parameters for WT cartilage. Staining for aggrecan neoepitope, a marker of aggrecan degradation in WT articular cartilage, increased at 5 and 12 months, but disappeared at 24 months due to loss of cartilage; whereas it was reduced in TG articular cartilage after 12 months. Expression of cartilage genes and MMPs under cyclic tension stress (CTS) was measured by using primary cultures of chondrocytes obtained from wild-type (WT) rib cartilage and TG or WT epiphyseal cartilage. CTS applied to primary cultures of mock-transfected rib chondrocytes from WT cartilage and WT epiphyseal cartilage induced expression of Col1a1, ColXa1, Mmp-13, and Mmp-9 mRNAs; however, their levels were not affected in CCN2-overexpressing chondrocytes and TG epiphyseal cartilage. In conclusion, cartilage-specific overexpression of CCN2 during the developmental and growth periods reduced age-related changes in articular cartilage. Thus CCN2 may play a role as an anti-aging factor by stabilizing articular cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号