首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Stochastic competitive models with pollution and without pollution are proposed and studied. For the first system with pollution, sufficient criteria for extinction, nonpersistence in the mean, weak persistence in the mean, strong persistence in the mean, and stochastic permanence are established. The threshold between weak persistence in the mean and extinction for each population is obtained. It is found that stochastic disturbance is favorable for the survival of one species and is unfavorable for the survival of the other species. For the second system with pollution, sufficient conditions for extinction and weak persistence are obtained. For the model without pollution, a partial stochastic competitive exclusion principle is derived.  相似文献   

2.
A new single-species model disturbed by both white noise and colored noise in a polluted environment is developed and analyzed. Sufficient criteria for extinction, stochastic nonpersistence in the mean, stochastic weak persistence in the mean, stochastic strong persistence in the mean and stochastic permanence of the species are established. The threshold between stochastic weak persistence in the mean and extinction is obtained. The results show that both white and colored environmental noises have sufficient effect to the survival results.  相似文献   

3.
Metapopulation moments: coupling, stochasticity and persistence   总被引:9,自引:1,他引:8  
1.  Spatial heterogeneity has long been viewed as a reliable means of increasing persistence. Here, an analytical model is developed to consider the variation and, hence, the persistence of stochastic metapopulations. This model relies on a novel moment closure technique, which is equivalent to assuming log-normal distributions for the population sizes.
2.  Single-species models show the greatest persistence when the mixing between subpopulations is large, so spatial heterogeneity is of no benefit. This result is confirmed by stochastic simulation of the full metapopulation.
3.  In contrast, natural-enemy models exhibit the greatest persistence for intermediate levels of coupling. When the coupling is too low, there are insufficient rescue effects between the subpopulations to sustain the dynamics, whereas when the coupling is too high all spatial heterogeneity is lost.
4.  The difference in behaviour between the one- and two-species models can be attributed to the oscillatory nature of the natural-enemy system.  相似文献   

4.
This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results.  相似文献   

5.
Gösta Nachman 《Oikos》2001,94(1):72-88
Predators and prey are usually heterogeneously distributed in space so that the ability of the predators to respond to the distribution of their prey may have a profound influence on the stability and persistence of a predator‐prey system. A special type of dynamics is “hide‐and‐seek” characterized by a high turnover rate of local populations of prey and predators, because once the predators have found a patch of prey they quickly overexploit it, whereupon the starving predators either should move to better places or die. Continued persistence of prey and predators thus hinges on a long‐term balance between local extinctions and founding of new subpopulations. The colonization rate depends on the rate of emigration from occupied patches and the likelihood of successfully arriving at a suitable new patch, while extinction rate depends on the local population dynamics. Since extinctions and colonizations are both discrete probabilistic events, these phenomena are most adequately modeled by means of a stochastic model. In order to demonstrate the qualitative differences between a deterministic and stochastic approach to population dynamics, a spatially explicit tritrophic predator‐prey model is developed in a deterministic and a stochastic version. The model is parameterized using data for the two‐spotted spider mite (Tetranychus urticae) and the phytoseiid mite predator Phytoseiulus persimilis inhabiting greenhouse cucumbers.
Simulations show that the deterministic and stochastic approaches yield different results. The deterministic version predicts that the populations will exhibit violent fluctuations, implying that the system is fundamentally unstable. In contrast, the stochastic version predicts that the two species will be able to coexist in spite of frequent local extinctions of both species, provided the system consists of a sufficiently large number of local populations. This finding is in agreement with experimental results. It is therefore concluded that demographic stochasticity in combination with dispersal is capable of producing and maintaining sufficient asynchrony between local populations to ensure long‐term regional (metapopulation) persistence.  相似文献   

6.
Results are summarized from the literature on three commonly used stochastic population models with regard to persistence time. In addition, several new results are introduced to clearly illustrate similarities between the models. Specifically, the relations between the mean persistence time and higher-order moments for discrete-time Markov chain models, continuous-time Markov chain models, and stochastic differential equation models are compared for populations experiencing demographic variability. Similarities between the models are demonstrated analytically, and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models are consistently formulated. As an example, the three stochastic models are applied to a population satisfying logistic growth. Logistic growth is interesting as different birth and death rates can yield the same logistic differential equation. However, the persistence behavior of the population is strongly dependent on the explicit forms for the birth and death rates. Computational results demonstrate how dramatically the mean persistence time can vary for different populations that experience the same logistic growth.  相似文献   

7.
The stochastic logistic model is the simplest model that combines individual-level demography with density dependence. It explicitly or implicitly underlies many models of biodiversity of competing species, as well as non-spatial or metapopulation models of persistence of individual species. The model has also been used to study persistence in simple disease models. The stochastic logistic model has direct relevance for questions of limiting similarity in ecological systems. This paper uses a biased random walk heuristic to derive a scaling relationship for the persistence of a population under this model, and discusses its implications for models of biodiversity and persistence. Time to extinction of a species under the stochastic logistic model is approximated by the exponential of the scaling quantity U=(R-1)(2) N/R(R+1), where N is the habitat size and R is the basic reproductive number.  相似文献   

8.
A discrete-time Markov chain model, a continuous-time Markov chain model, and a stochastic differential equation model are compared for a population experiencing demographic and environmental variability. It is assumed that the environment produces random changes in the per capita birth and death rates, which are independent from the inherent random (demographic) variations in the number of births and deaths for any time interval. An existence and uniqueness result is proved for the stochastic differential equation system. Similarities between the models are demonstrated analytically and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models satisfy certain consistency conditions.  相似文献   

9.
This paper presents a study of a nonlinear reaction–diffusion population model in fragmented environments. The model is set on , with periodic heterogeneous coefficients obtained using stochastic processes. Using a criterion of species persistence based on the notion of principal eigenvalue of an elliptic operator, we provided a precise numerical analysis of the interactions between habitat fragmentation and species persistence. The obtained results clearly indicated that species persistence strongly tends to decrease with habitat fragmentation. Moreover, comparing two stochastic models of landscape pattern generation, we observed that in addition to local fragmentation, a more global effect of the position of the habitat patches also influenced species persistence.   相似文献   

10.
It is shown that the lottery competition model permits coexistence in a stochastic environment, but not in a constant environment. Conditions for coexistence and competitive exclusion are determined. Analysis of these conditions shows that the essential requirements for coexistence are overlapping generations and fluctuating birth rates which ensure that each species has periods when it is increasing. It is found that a species may persist provided only that it is favored sufficiently by the environment during favorable periods independently of the extent to which the other species is favored during its favorable periods.Coexistence is defined in terms of the stochastic boundedness criterion for species persistence. Using the lottery model as an example this criterion is justified and compared with other persistence criteria. Properties of the stationary distribution of population density are determined for an interesting limiting case of the lottery model and these are related to stochastic boundedness. An attempt is then made to relate stochastic boundedness for infinite population models to the behavior of finite population models.  相似文献   

11.
The persistence of a spatially structured population is determined by the rate of dispersal among habitat patches. If the local dynamic at the subpopulation level is extinction-prone, the system viability is maximal at intermediate connectivity where recolonization is allowed, but full synchronization that enables correlated extinction is forbidden. Here we developed and used an algorithm for agent-based simulations in order to study the persistence of a stochastic metapopulation. The effect of noise is shown to be dramatic, and the dynamics of the spatial population differs substantially from the predictions of deterministic models. This has been validated for the stochastic versions of the logistic map, the Ricker map and the Nicholson-Bailey host-parasitoid system. To analyze the possibility of extinction, previous studies were focused on the attractiveness (Lyapunov exponent) of stable solutions and the structure of their basin of attraction (dependence on initial population size). Our results suggest that these features are of secondary importance in the presence of stochasticity. Instead, optimal sustainability is achieved when decoherence is maximal. Individual-based simulations of metapopulations of different sizes, dimensions and noise types, show that the system''s lifetime peaks when it displays checkerboard spatial patterns. This conclusion is supported by the results of a recently published Drosophila experiment. The checkerboard strategy provides a technique for the manipulation of migration rates (e.g., by constructing corridors) in order to affect the persistence of a metapopulation. It may be used in order to minimize the risk of extinction of an endangered species, or to maximize the efficiency of an eradication campaign.  相似文献   

12.
Modelling metapopulations with stochastic membrane systems   总被引:2,自引:0,他引:2  
Metapopulations, or multi-patch systems, are models describing the interactions and the behavior of populations living in fragmented habitats. Dispersal, persistence and extinction are some of the characteristics of interest in ecological studies of metapopulations. In this paper, we propose a novel method to analyze metapopulations, which is based on a discrete and stochastic modelling framework in the area of Membrane Computing. New structural features of membrane systems, necessary to appropriately describe a multi-patch system, are introduced, such as the reduction of the maximal parallel consumption of objects, the spatial arrangement of membranes and the stochastic creation of objects. The role of the additional features, their meaning for a metapopulation model and the emergence of relevant behaviors are then investigated by means of stochastic simulations. Conclusive remarks and ideas for future research are finally presented.  相似文献   

13.
14.
Ponciano JM  De Gelder L  Top EM  Joyce P 《Genetics》2007,176(2):957-968
Horizontal plasmid transfer plays a key role in bacterial adaptation. In harsh environments, bacterial populations adapt by sampling genetic material from a horizontal gene pool through self-transmissible plasmids, and that allows persistence of these mobile genetic elements. In the absence of selection for plasmid-encoded traits it is not well understood if and how plasmids persist in bacterial communities. Here we present three models of the dynamics of plasmid persistence in the absence of selection. The models consider plasmid loss (segregation), plasmid cost, conjugative plasmid transfer, and observation error. Also, we present a stochastic model in which the relative fitness of the plasmid-free cells was modeled as a random variable affected by an environmental process using a hidden Markov model (HMM). Extensive simulations showed that the estimates from the proposed model are nearly unbiased. Likelihood-ratio tests showed that the dynamics of plasmid persistence are strongly dependent on the host type. Accounting for stochasticity was necessary to explain four of seven time-series data sets, thus confirming that plasmid persistence needs to be understood as a stochastic process. This work can be viewed as a conceptual starting point under which new plasmid persistence hypotheses can be tested.  相似文献   

15.
Summary The relationship between the deterministic stability of nonlinear ecological models and the properties of the stochastic model obtained by adding weak random perturbations is studied. It is shown that the expected escape time for the stochastic model from a bounded region with nonsingular boundary is determined by a Liapunov function for the nonlinear deterministic model. This connection between stochastic and deterministic models brings together various notions of persistence and vulnerability of ecosystems as defined for deterministically perturbed or randomly perturbed models.  相似文献   

16.
Metapopulation theory for fragmented landscapes   总被引:18,自引:0,他引:18  
We review recent developments in spatially realistic metapopulation theory, which leads to quantitative models of the dynamics of species inhabiting highly fragmented landscapes. Our emphasis is in stochastic patch occupancy models, which describe the presence or absence of the focal species in habitat patches. We discuss a number of ecologically important quantities that can be derived from the full stochastic models and their deterministic approximations, with a particular aim of characterizing the respective roles of the structure of the landscape and the properties of the species. These quantities include the threshold condition for persistence, the contributions that individual habitat patches make to metapopulation dynamics and persistence, the time to metapopulation extinction, and the effective size of a metapopulation living in a heterogeneous patch network.  相似文献   

17.
To understand the interplay between environmental stochasticity and Allee effects, we analyse persistence, asymptotic extinction, and conditional persistence for stochastic difference equations. Our analysis reveals that persistence requires that the geometric mean of fitness at low densities is greater than one. When this geometric mean is less than one, asymptotic extinction occurs with high probability for low initial population densities. Additionally, if the population only experiences positive density-dependent feedbacks, conditional persistence occurs provided the geometric mean of fitness at high population densities is greater than one. However, if the population experiences both positive and negative density-dependent feedbacks, conditional persistence only occurs if environmental fluctuations are sufficiently small. We illustrate counter-intuitively that environmental fluctuations can increase the probability of persistence when populations are initially at low densities, and can cause asymptotic extinction of populations experiencing intermediate predation rates despite conditional persistence occurring at higher predation rates.  相似文献   

18.
Persistence of an infectious agent in a population is an important issue in epidemiology. It is assumed that spatially fragmenting a population of hosts increases the probability of persistence of an infectious agent and that movement of hosts between the patches is vital for that. The influence of migration on persistence is however often studied in mean-field models, whereas in reality the actual distance travelled can be limited and influence the movement dynamics. We use a stochastic model, where within- and between-patch dynamics are coupled and movement is modelled explicitly, to show that explicit consideration of movement distance makes the relation between persistence of infectious agents and the metapopulation structure of its hosts less straightforward than previously thought. We show that the probability of persistence is largest at an intermediate movement distance of the host and that spatially fragmenting a population of hosts is not necessarily beneficial for persistence.  相似文献   

19.
The critical community size (CCS) for measles, which separates persistent from extinction-prone populations, is arguably the best understood stochastic threshold in ecology. Using simple models, we explore a relatively neglected relationship of how the CCS scales with birth rate. A predominantly positive relationship of persistence with birth rate is complicated by the accompanying dynamical transitions of the underlying deterministic process. We show that these transitions imply a lower CCS for high birth rate less developed countries and contrary to the experience in lower birth rate, industrial countries, the CCS may increase after vaccination. We also consider the evolutionary implications of the CCS for the origin of measles; this analysis explores how the deterministic and stochastic thresholds for invasion and persistence set limits on the mechanism by which this highly infectious pathogen could have successfully colonized its human host.  相似文献   

20.
Local instability of exploiter-victim systems is well-known in both theory and in nature. Victims can be too sparse to support exploiter reproduction (under-exploitation) or they can be too readily driven to extinction (over-exploitation). Exploiters of seasonal resources face the additional challenge of surviving periods when victims are rare or unavailable. We formulate a fully stochastic model of highly seasonal pathogen-host dynamics and explore the interactions between an entomopathogenic nematode and its lepidopteran host. Our model suggests that if nematode populations experience the high rates of mortality predicted by short-term laboratory experiments, the paired threats of under- and over-exploitation should preclude the long-term persistence of this exploiter-victim system. We measured nematode mortality rates in the field and found that long-term mortality is lower than that predicted by short-term experiments. Incorporation of this new data into our model produces long-term persistence of local nematode populations across a range of initial nematode densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号