首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrocardiography (ECG) signals are often contaminated by various kinds of noise or artifacts, for example, morphological changes due to motion artifact, non-stationary noise due to muscular contraction (EMG), etc. Some of these contaminations severely affect the usefulness of ECG signals, especially when computer aided algorithms are utilized. In this paper, a novel ECG enhancement algorithm is proposed based on sparse derivatives. By solving a convex ?1 optimization problem, artifacts are reduced by modeling the clean ECG signal as a sum of two signals whose second and third-order derivatives (differences) are sparse respectively. The algorithm is applied to a QRS detection system and validated using the MIT-BIH Arrhythmia database (109,452 anotations), resulting a sensitivity of Se = 99.87% and a positive prediction of +P = 99.88%.  相似文献   

2.
《IRBM》2008,29(5):310-317
Among all electrocardiogram (ECG) components, the QRS complex is the most significant feature. This paper presents a new algorithm for recognition of QRS complexes in the electrocardiogram (ECG) based on support vector machine (SVM). Digital filtering techniques are used to remove power line interference and baseline wander in the ECG signal. SVM is used as a classifier to delineate QRS and non-QRS regions. Algorithm performance was evaluated against the standard CSE ECG database. The results indicated that the algorithm achieved 99.3% of the detection rate. The percentage of false positive and false negative was 12.4 and 0.7% respectively. It could function reliably even under the condition of poor signal quality of the ECG signal.  相似文献   

3.
This paper presents a new ECG denoising approach based on noise reduction algorithms in empirical mode decomposition (EMD) and discrete wavelet transform (DWT) domains. Unlike the conventional EMD based ECG denoising approaches that neglect a number of initial intrinsic mode functions (IMFs) containing the QRS complex as well as noise, we propose to perform windowing in the EMD domain in order to reduce the noise from the initial IMFs instead of discarding them completely thus preserving the QRS complex and yielding a relatively cleaner ECG signal. The signal thus obtained is transformed in the DWT domain, where an adaptive soft thresholding based noise reduction algorithm is employed considering the advantageous properties of the DWT compared to that of the EMD in preserving the energy in the presence of noise and in reconstructing the original ECG signal with a better time resolution. Extensive simulations are carried out using the MIT-BIH arrythmia database and the performance of the proposed method is evaluated in terms of several standard metrics. The simulation results show that the proposed method is able to reduce noise from the noisy ECG signals more accurately and consistently in comparison to some of the stateof-the-art methods.  相似文献   

4.
《IRBM》2014,35(6):351-361
Nowadays, doctors use electrocardiogram (ECG) to diagnose heart diseases commonly. However, some nonideal effects are often distributed in ECG. Discrete wavelet transform (DWT) is efficient for nonstationary signal analysis. In this paper, the Symlets sym5 is chosen as the wavelet function to decompose recorded ECG signals for noise removal. Soft-thresholding method is then applied for feature detection. To detect ECG features, R peak of each heart beat is first detected, and the onset and offset of the QRS complex are then detected. Finally, the signal is reconstructed to remove high frequency interferences and applied with adaptive searching window and threshold to detect P and T waves. We use the MIT-BIH arrhythmia database for algorithm verification. For noise reduction, the SNR improvement is achieved at least 10 dB at SNR 5 dB, and most of the improvement SNR are better than other methods at least 1 dB at different SNR. When applying to the real portable ECG device, all R peaks can be detected when patients walk, run, or move at the speed below 9 km/h. The performance of delineation on database shows in our algorithm can achieve high sensitivity in detecting ECG features. The QRS detector attains a sensitivity over 99.94%, while detectors of P and T waves achieve 99.75% and 99.7%, respectively.  相似文献   

5.
结合模板匹配和改进的导数阈值法,提出了一种QRS波群实时检测方法CT2(combination method of template matching and improved derivative threshold)。首先,预采集一段ECG信号,使用高斯函数构造QRS模板;然后将实时采集的ECG信号使用CT2检测R波位置。为了比较算法检测精度和效率,使用CT2和基于小波模极大值的方法进行了对比。结果表明,CT2检测精度与基于小波模极大值的方法相当,但运算时间大大缩短,适于实时检测。  相似文献   

6.
This paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function. In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the morphology of the QRS complexes.  相似文献   

7.
本文描述了基于二进制小波变换(DyWT),ECG信号中QRS综合波的检测。设计-小波它适合于QRS检测,将基于心电信号的特殊的特征的特征为小波的尺度。DyWT较之其它方法最基本的优点为强有力的抑制噪声检测以及在分析随时间变化ECG波形时的灵活性。  相似文献   

8.
QRS波群的准确定位是ECG信号自动分析的基础。为提高QRS检测率,提出一种基于独立元分析(ICA)和联合小波熵(CWS)检测多导联ECG信号QRS的算法。ICA算法从滤波后的多导联ECG信号中分离出对应心室活动的独立元;然后对各独立元进行连续小波变换(CWT),重构小波系数的相空间,结合相空间中的QRS信息对独立元排序;最后检测排序后独立元的CWS得到QRS信息。实验对St.Petersburg12导联心率失常数据库及64导联犬心外膜数据库测试,比较本文算法与单导联QRS检测算法和双导联QRS检测算法的性能。结果表明,该文算法的性能最好,检测准确率分别为99.98%和100%。  相似文献   

9.
The R-peak detection is crucial in all kinds of electrocardiogram (ECG) applications. However, almost all existing R-peak detectors suffer from the non-stationarity of both QRS morphology and noise. To combat this difficulty, we propose a new R-peak detector, which is based on the new preprocessing technique and an automated peak-finding logic. In this paper, we first demonstrate that the proposed preprocessor with a Shannon energy envelope (SEE) estimator is better able to detect R-peaks in case of wider and small QRS complexes, negative QRS polarities, and sudden changes in QRS amplitudes over that using the absolute value, energy value, and Shannon entropy features. Then we justify the simplicity and robustness of the proposed peak-finding logic using the Hilbert-transform (HT) and moving average (MA) filter. The proposed R-peak detector is validated using the first-channel of the 48 ECG records of the MIT-BITH arrhythmia database, and achieves average detection accuracy of 99.80%, sensitivity of 99.93% and positive predictivity of 99.86%. Various experimental results show that the proposed R-peak detection method significantly outperforms other well-known methods in case of noisy or pathological signals.  相似文献   

10.
Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.  相似文献   

11.
本文描述了一种基于两进小波变换(DYWT)的QRS波检测器。小波尺度的选择是基于心电信号的频谱的特点,并根据多尺度选择方法判决检测心电QRS波,实验结果表明,对于在有强大的噪声和严重的基线漂移干扰下的心电信号能够有效的识别。  相似文献   

12.
In this work a new strategy for automatic detection of ischemic episodes is proposed. A new measure for ST deviation based on the time–frequency analysis of the ECG and the use of a reduced set of Hermite basis functions for T wave and QRS complex morphology characterization, are the key points of the proposed methodology.Usually, ischemia manifests itself in the ECG signal by ST segment deviation or by QRS complex and T wave changes in morphology. These effects might occur simultaneously. Time–frequency methods are especially adequate for the detection of small transient characteristics hidden in the ECG, such as ST segment alterations. A Wigner–Ville transform-based approach is proposed to estimate the ST shift. To characterize the alterations in the T wave and the QRS morphologies, each cardiac beat is described by expansions in Hermite functions. These demonstrated to be suitable to capture the most relevant morphologic characteristics of the signal. A lead dependent neural network classifier considers, as inputs, the ST segment deviation and the Hermite expansion coefficients. The ability of the proposed method in ischemia episodes detection is evaluated using the European Society of Cardiology ST–T database. A sensitivity of 96.7% and a positive predictivity of 96.2% reveal the capacity of the proposed strategy to perform ischemic episodes identification.  相似文献   

13.
Atrial fibrillation (AF), the most frequent cause of cardioembolic stroke, is increasing in prevalence as the population ages, and presents with a broad spectrum of symptoms and severity. The early identification of AF is an essential part for preventing the possibility of blood clotting and stroke. In this work, a real-time algorithm is proposed for accurately screening AF episodes in electrocardiograms. This method adopts heart rate sequence, and it involves the application of symbolic dynamics and Shannon entropy. Using novel recursive algorithms, a low-computational complexity can be obtained. Four publicly-accessible sets of clinical data (Long-Term AF, MIT-BIH AF, MIT-BIH Arrhythmia, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. The first database was selected as a training set; the receiver operating characteristic (ROC) curve was performed, and the best performance was achieved at the threshold of 0.639: the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and overall accuracy (ACC) were 96.14%, 95.73%, 97.03% and 95.97%, respectively. The other three databases were used for independent testing. Using the obtained decision-making threshold (i.e., 0.639), for the second set, the obtained parameters were 97.37%, 98.44%, 97.89% and 97.99%, respectively; for the third database, these parameters were 97.83%, 87.41%, 47.67% and 88.51%, respectively; the Sp was 99.68% for the fourth set. The latest methods were also employed for comparison. Collectively, results presented in this study indicate that the combination of symbolic dynamics and Shannon entropy yields a potent AF detector, and suggest this method could be of practical use in both clinical and out-of-clinical settings.  相似文献   

14.
QRS波群是ECG信号的重要组成部分,是心电信号分析的基础.QRS波群的检测方法已经有很多种实用有效的方法,并逐步地走向成熟,在实际应用中得到实现.本文就QRS波群的检测方法作了具体的整理与分析,较全面的阐述了实际应用中的各种算法,最后作者对检测算法的发展趋势进行了总结和展望.  相似文献   

15.
《IRBM》2020,41(3):172-183
The rapid development of the wearable electrocardiogram monitoring equipment increases the requirements for R peak detection in wearable devices. An improved method called ISC algorithm is proposed with high anti-interference ability for R peak detection in wearable devices based on a simple basic algorithm called SC algorithm. The proposed method is characterized by using the updated amplitude selection threshold, updated slope comparison threshold and RR interval judgement to reduce false positives and false negatives. For data from MIT-BIH Arrhythmia Database, the positive predictivity P+ of ISC algorithm can reach 99.12%, and the sensitivity Se of ISC algorithm is more than 95%. For MIT-BIH Noise Stress Test Database, the accuracy of ISC algorithm for both sensitivity Se and positive predictivity P+ can exceed 94% under three common noise, baseline wander, muscle artifact, and electrode motion artifact, where the positive predictivity P+ of ISC algorithm is 44.46% higher than that of SC algorithm on average. For wearable devices in exercise, even under the exercise intensity of 7 km per hour, the average positive predictivity P+ of ISC algorithm is 99.32%, which is 60.93% higher than that of SC algorithm. The high anti-interference ability shows that ISC algorithm is suitable for R peak detection in wearable devices.  相似文献   

16.
In this paper, a new Wavelet threshold based ECG signal compression technique using uniform scalar zero zone quantizer (USZZQ) and Huffman coding on differencing significance map (DSM) is proposed. Wavelet coefficients are selected based on the energy packing efficiency of each sub-band. Significant Wavelet coefficients are quantized with uniform scalar zero zone quantizer. Significance map is created to store the indices of the significant coefficients. This map is encoded efficiently with less number of bits by applying Huffman coding on the differences between indices in the significance map. ECG records from the MIT-BIH arrhythmia database are selected as test data. For the record 117, the proposed technique achieves a compression ratio of 18.7:1 with lower percentage root mean square difference (PRD) compared to other threshold based methods. The proposed technique is tested for MIT-BIH arrhythmia record 119 and a compression ratio of 21.81:1 is achieved with a PRD value of 3.716% which is much lower compared to the reported PRD value of 5.0 and 5.5% of set partitioning in hierarchical tress (SPIHT) and analysis by synthesis ECG compressor (ASEC), respectively. The noise eliminating capability of the proposed technique is also demonstrated in this work. The proposed technique achieves the required compression ratio with less reconstruction error for GSM-based cellular telemedicine system.  相似文献   

17.
Real time electrocardiogram QRS detection using combined adaptive threshold   总被引:2,自引:0,他引:2  

Background  

QRS and ventricular beat detection is a basic procedure for electrocardiogram (ECG) processing and analysis. Large variety of methods have been proposed and used, featuring high percentages of correct detection. Nevertheless, the problem remains open especially with respect to higher detection accuracy in noisy ECGs  相似文献   

18.
Photoplethysmogram (PPG) monitoring is not only essential for critically ill patients in hospitals or at home, but also for those undergoing exercise testing. However, processing PPG signals measured after exercise is challenging, especially if the environment is hot and humid. In this paper, we propose a novel algorithm that can detect systolic peaks under challenging conditions, as in the case of emergency responders in tropical conditions. Accurate systolic-peak detection is an important first step for the analysis of heart rate variability. Algorithms based on local maxima-minima, first-derivative, and slope sum are evaluated, and a new algorithm is introduced to improve the detection rate. With 40 healthy subjects, the new algorithm demonstrates the highest overall detection accuracy (99.84% sensitivity, 99.89% positive predictivity). Existing algorithms, such as Billauer''s, Li''s and Zong''s, have comparable although lower accuracy. However, the proposed algorithm presents an advantage for real-time applications by avoiding human intervention in threshold determination. For best performance, we show that a combination of two event-related moving averages with an offset threshold has an advantage in detecting systolic peaks, even in heat-stressed PPG signals.  相似文献   

19.

Background

Pacing from RV mid septum and outflow tract septum has been proposed as a more physiological site of pacing and narrower paced QRS complex duration. The paced QRS morphology and duration in different RV pacing sites is under continued discussion. Hence, this study was designed to address the correlation of pacing sites in right ventricle with paced QRS complex duration.

Methods

Two hundred fifty-two consecutive patients who underwent pacemaker implantation were enrolled. Baseline clinical characteristics were recorded for each patient. All patient underwent fluoroscopy, electrocardiogram and echocardiography post pacemaker implantation. Paced QRS duration was calculated from the leads with maximum QRS duration.

Results

Mean paced QRS (pQRS) duration was significantly higher in apical septum group with a mean of 148.9?±?14.8?m?s compared to mid septum (139.6?±?19.9?m?s; p-value 0.003) and RVOT septum (139.6?±?14.8?m?s; p-value 0.002) groups, respectively. There was no significant difference between mid-septal and RVOT septal pQRS duration. On multivariate analysis, female gender, baseline QRS duration and RVOT septal pacing were the only predictors for narrow pQRS duration (<150?msec).

Conclusion

RV mid-septal and RVOT septal pacing were associated with significantly lower pQRS duration as compared with apical pacing. Based on multivariate analysis RVOT septal pacing appears to be preferred and more physiological pacing site.  相似文献   

20.
基于对QRS波群的特征变量提取。利用减法聚类和自适应模糊神经网络构建心律失常辅助诊断模型,分析不同训练数据集对模型测试结果的影响。实验结果表明。该模型能准确识别不同类型的QRS波群,使用不同训练数据集对诊断结果存在影响,为进一步实现更复杂的心律失常辅助诊断模型提供方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号