首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Previous studies from our laboratory revealed that cellular poly(C) binding protein 2 (PCBP2) downregulates vesicular stomatitis virus (VSV) gene expression. We show here that VSV infection induces the formation of granular structures in the cytoplasm containing cellular RNA-binding proteins, including PCBP2, T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-related protein (TIAR). Depletion of TIA1 via small interfering RNAs (siRNAs), but not depletion of TIAR, results in enhanced VSV growth and gene expression. The VSV-induced granules appear to be similar to the stress granules (SGs) generated in cells triggered by heat shock or oxidative stress but do not contain some of the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or eIF4A, or the processing body (PB) markers, such as mRNA-decapping enzyme 1A (DCP1a), and thus may not represent canonical SGs or PBs. Our results revealed that the VSV-induced granules, called SG-like structures here, contain the viral replicative proteins and RNAs. The formation and maintenance of the SG-like structures required viral replication and ongoing protein synthesis, but an intact cytoskeletal network was not necessary. These results suggest that cells respond to VSV infection by aggregating the antiviral proteins, such as PCBP2 and TIA1, to form SG-like structures. The functional significance of these SG-like structures in VSV-infected cells is currently under investigation.  相似文献   

3.
The 5' noncoding region of the poliovirus genome contains RNA structures important for replication and translation. Here we show that two closely related cellular poly(rC) binding proteins (PCBP1 and PCBP2) bind to the terminal cloverleaf structure and facilitate the interaction of the viral protein 3CD (the uncleaved precursor of the protease-polymerase). In addition, these cellular proteins bind to stem-loop IV of the internal ribosomal entry site. The proteins are cytoplasmic and largely associated with ribosomes; they appear to dimerize in solution and to form heterodimers when binding to stem-loop IV. Initiation of viral translation in Xenopus oocytes is strongly inhibited by co-injection of specific antibodies directed against PCBP1 or PCBP2, indicating that the poly(rC) binding proteins may facilitate this process. Furthermore, PCPB-depleted HeLa extracts translate poliovirus RNA inefficiently and the activity is partially restored by addition of recombinant PCBP proteins.  相似文献   

4.
Enterovirus 71 (EV71) is one causative agent of hand, foot, and mouth disease (HFMD), which may lead to severe neurological disorders and mortality in children. EV71 genome is a positive single-stranded RNA containing a single open reading frame (ORF) flanked by 5′-untranslated region (5′UTR) and 3′UTR. The 5′UTR is fundamentally important for virus replication by interacting with cellular proteins. Here, we revealed that poly(C)-binding protein 1 (PCBP1) specifically binds to the 5′UTR of EV71. Detailed studies indicated that the RNA-binding K-homologous 1 (KH1) domain of PCBP1 is responsible for its binding to the stem-loop I and IV of EV71 5′UTR. Interestingly, we revealed that PCBP1 is distributed in the nucleus and cytoplasm of uninfected cells, but mainly localized in the cytoplasm of EV71-infected cells due to interaction and co-localization with the viral RNA. Furthermore, sub-cellular distribution analysis showed that PCBP1 is located in ER-derived membrane, in where virus replication occurred in the cytoplasm of EV71-infected cells, suggesting PCBP1 is recruited in a membrane-associated replication complex. In addition, we found that the binding of PCBP1 to 5′UTR resulted in enhancing EV71 viral protein expression and virus production so as to facilitate viral replication. Thus, we revealed a novel mechanism in which PCBP1 as a positive regulator involved in regulation of EV71 replication in the host specialized membrane-associated replication complex, which provides an insight into cellular factors involved in EV71 replication.  相似文献   

5.
6.
7.
8.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   

9.
10.
Xin Z  Han W  Zhao Z  Xia Q  Yin B  Yuan J  Peng X 《PloS one》2011,6(10):e25419
Interferon-α (IFN-α) is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV) during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b). However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3'Untranslated Region (UTR) of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3'UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.  相似文献   

11.
12.
13.
During picornavirus infection, several cellular proteins are cleaved by virus-encoded proteinases. Such cleavage events are likely to be involved in the changing dynamics during the intracellular viral life cycle, from viral translation to host shutoff to RNA replication to virion assembly. For example, it has been proposed that there is an active switch from poliovirus translation to RNA replication mediated by changes in RNA-binding protein affinities. This switch could be a mechanism for controlling template selection for translation and negative-strand viral RNA synthesis, two processes that use the same positive-strand RNA as a template but proceed in opposing directions. The cellular protein poly(rC)-binding protein (PCBP) was identified as a primary candidate for regulating such a mechanism. Among the four different isoforms of PCBP in mammalian cells, PCBP2 is required for translation initiation on picornavirus genomes with type I internal ribosome entry site elements and also for RNA replication. Through its three K-homologous (KH) domains, PCPB2 forms functional protein-protein and RNA-protein complexes with components of the viral translation and replication machinery. We have found that the isoforms PCBP1 and -2 are cleaved during the mid-to-late phase of poliovirus infection. On the basis of in vitro cleavage assays, we determined that this cleavage event was mediated by the viral proteinases 3C/3CD. The primary cleavage occurs in the linker between the KH2 and KH3 domains, resulting in truncated PCBP2 lacking the KH3 domain. This cleaved protein, termed PCBP2-DeltaKH3, is unable to function in translation but maintains its activity in viral RNA replication. We propose that through the loss of the KH3 domain, and therefore loss of its ability to function in translation, PCBP2 can mediate the switch from viral translation to RNA replication.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Utilization of internal ribosome entry segment (IRES) structures in the 5′ noncoding region (5′NCR) of picornavirus RNAs for initiation of translation requires a number of host cell factors whose distribution may vary in different cells and whose requirement may vary for different picornaviruses. We have examined the requirement of the cellular protein poly(rC) binding protein 2 (PCBP2) for hepatitis A virus (HAV) RNA translation. PCBP2 has recently been identified as a factor required for translation and replication of poliovirus (PV) RNA. PCBP2 was shown to be present in FRhK-4 cells, which are permissive for growth of HAV, as it is in HeLa cells, which support translation of HAV RNA but which have not been reported to host replication of the virus. Competition RNA mobility shift assays showed that the 5′NCR of HAV RNA competed for binding of PCBP2 with a probe representing stem-loop IV of the PV 5′NCR. The binding site on HAV RNA was mapped to nucleotides 1 to 157, which includes a pyrimidine-rich sequence. HeLa cell extracts that had been depleted of PCBP2 by passage over a PV stem-loop IV RNA affinity column supported only low levels of HAV RNA translation. Translation activity was restored upon addition of recombinant PCBP2 to the depleted extract. Removal of the 5′-terminal 138 nucleotides of the HAV RNA, or removal of the entire IRES, eliminated the dependence of HAV RNA translation on PCBP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号