首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human milk contains a variety of growth factors. Recently, it was reported that vascular endothelial growth factor (VEGF) was one of them. We investigated milk VEGF isoforms, their functions, and VEGF receptors on mammary gland epithelial cells (MEC). The VEGF concentration in human milk was 74.3+/-34.9ng/ml on the first day after delivery, and rapidly decreased in a couple of days to 6.2+/-2.3ng/ml on the fifth day, and matured milk maintained about 4ng/ml. In an MTT assay, human milk accelerated HUVEC proliferation and MV303, a neutralizing antibody of VEGF, blocked 17.3 % of the effect. Immunoprecipitation and Western blotting showed that VEGF121 and VEGF165 were contained in human colostrums, and RT-PCR of human MEC confirmed that VEGF121, VEGF165 and VEGF189 were present. By immunostaining of human breast tissues, RT-PCR of MEC from human colostrum and measurement of the VEGF concentrations of conditioned media of cultured human MEC, it was confirmed that VEGF was produced by MEC. MEC was also expressed VEGF receptors, flt-1 and Flk-1/KDR. These results speculate us that the existence of autocrine or paracrine system within breast tissue via VEGF receptors on MEC and have a role in lactation.  相似文献   

2.
Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.  相似文献   

3.
Little is known about the expression pattern of vascular endothelial growth factor (VEGF) among smooth muscle cells of different arterial regions. Therefore, we have conducted studies aimed at increasing expression of VEGF in cultured human smooth muscle cells (SMCs) from different sites: aorta, umbilical artery, and coronary artery. Two plasmids harboring human VEGF121 and VEGF165 isoforms, respectively, were constructed and lipotransfected into vascular SMCs, using the Fu-GENE 6. Extensive optimization of transfection conditions were performed prior to this. Different basal levels of VEGF were observed between cell types: from 0.51–0.95 pg/mL/μg protein in umbilical artery, through 2.32–2.39 pg/mL/μg protein in coronary artery, to 5.45–7.52 pg/mL/μg protein in aortic SMCs. Significant differences in responses to transfection were also observed: The increase in VEGF production was most pronounced in umbilical artery SMCs (e.g., with 4 μg VEGF121-cDNA/in the wells)—an approximate 600-fold as opposed to an 18-fold increase in aortic SMCs and a 29-fold increase in coronary artery SMCs. In addition, we observed significant increases in proliferation rate of aortic and coronary endothelial cells (ECs), after incubation with conditioned medium from VEGF-transfected SMCs. Observed changes differed in relation to cell origin and isoform.  相似文献   

4.
VEGF was first described as vascular permeability factor, a potent inducer of vascular leakage. Genetic evidence indicates that VEGF-stimulated endothelial proliferation in vitro and angiogenesis in vivo depend on heparan sulfate, but a requirement for heparan sulfate in vascular hyperpermeability has not been explored. Here we show that altering endothelial cell heparan sulfate biosynthesis in vivo decreases hyperpermeability induced by both VEGF(165) and VEGF(121). Because VEGF(121) does not bind heparan sulfate, the requirement for heparan sulfate suggested that it interacted with VEGF receptors rather than the ligand. By applying proximity ligation assays to primary brain endothelial cells, we show a direct interaction in situ between heparan sulfate and the VEGF receptor, VEGFR2. Furthermore, the number of heparan sulfate-VEGFR2 complexes increased in response to both VEGF(165) and VEGF(121). Genetic or heparin lyase-mediated alteration of endothelial heparan sulfate attenuated phosphorylation of VEGFR2 in response to VEGF(165) and VEGF(121), suggesting that the functional VEGF receptor complex contains heparan sulfate. Pharmacological blockade of heparan sulfate-protein interactions inhibited hyperpermeability in vivo, suggesting heparan sulfate as a potential target for treating hyperpermeability associated with ischemic disease.  相似文献   

5.
Communication between endothelial and bone cells is crucial for controlling vascular supply during bone growth, remodeling, and repair but the molecular mechanisms coordinating this intercellular crosstalk remain ill-defined. We have used primary human and rat long bone-derived osteoblast-like cells (HOB and LOB) and human umbilical vein endothelial cells (HUVEC) to interrogate the potential autocrine/paracrine role of vascular endothelial cell growth factor (VEGF) in osteoblast:endothelial cell (OB:EC) communication and examined whether prostaglandins (PG), known modulators of both OB and EC behavior, modify VEGF production. We found that the stable metabolite of PGI2, 6-keto-PGF(1alpha) and PGE2, induced a concentration-dependent increase in VEGF release by HOBs but not ECs. In ECs, VEGF promoted early ERK1/2 activation, late cyclooxygenase-2 (COX-2) protein induction, and release of 6-keto-PGF1alpha. In marked contrast, no significant modulation of these events was observed in HOBs exposed to VEGF, but LOBs clearly exhibited COX-dependent prostanoid release (10-fold less than EC) following VEGF treatment. A low level of osteoblast-like cell responsiveness to exogenous VEGF was supported by VEGFR2/Flk-1 immunolabelling and by blockade of VEGF-mediated prostanoid generation by a VEGFR tyrosine kinase inhibitor (TKI). HOB alkaline phosphatase (ALP) activity was increased following long-term non-contact co-culture with ECs and exposure of ECs to VEGF in this system further increased OB-like cell differentiation and markedly enhanced prostanoid release. Our studies confirm a paracrine EC-mediated effect of VEGF on OB-like cell behavior and are the first supporting a model in which prostanoids may facilitate this unidirectional VEGF-driven OB:EC communication. These findings may offer novel regimes for modulating pathological bone remodeling anomalies through the control of the closely coupled vascular supply.  相似文献   

6.
Vascular endothelial cells (ECs) are usually difficult to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement (ECGS). The expression of VEGF by HUVEC tansfected with VEGF gene was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS., However, when the culture medium was supplied with 2.5 ng/mL of basic fibroblast growth factor (bFGF), a synergistic effect of VEGF and bFGF was observed. In this case, the final cell density was recovered up to about 78% of maxium value.  相似文献   

7.
The vascular endothelial growth factor (VEGF) is a critical factor for development of the vascular system in physiological and pathological angiogenesis. This growth factor exists under at least three isoforms, VEGF120/121, VEGF164/165 and VEGF188/189 which are generated by alternative splicing. VEGF isoforms have different affinities for heparan sulphate as well as for VEGF receptors, and may play distinct roles in vascular development. The role of VEGF189 as an endothelial mitogen, however, remains controversial. VEGF189 is almost entirely bound to the cell surface or extracellular matrix, and is considered active after its cleavage and release from its extracellular binding site. In the present study, we demonstrate that VEGF189 induces endothelial cell proliferation and migration in vitro. The 30-60% increase observed with VEGF189 (10 ng/ml) in HUVEC proliferation was similar to that observed with VEGF165. However, the proliferative effect observed with VEGF189 appeared dependent on the origin of the endothelial cell, since the proliferation was clearly observed with HUVEC but not with BAEC or capillary endothelial cells from dermis (HMEC). The effect of VEGF189 on endothelial cell migration was also analyzed using the wound healing and the Boyden chamber assays. The migration effect was observed with BAEC which do not proliferate with VEGF189, suggesting that different mechanisms are involved in proliferation and migration. In addition, VEGF189 as well as VEGF165 induced a 2-fold increase of Flk-1/KDR expression in HUVEC, the receptor involved in proliferation and migration of endothelial cells. In the Matrigel plug assay in vivo, both VEGF189 and 165 (100 ng/ml) increased the infiltration of endothelial cells. These data suggest that VEGF189 induced endothelial cell migration and proliferation under certain circumstances.  相似文献   

8.
The vascular endothelial growth factor (VEGF) family encompasses four polypeptides that result from alternative splicing of mRNA. We have previously demonstrated differences in the secretion pattern of these polypeptides. Stable cell lines expressing VEGFs were established in human embryonic kidney CEN4 cells. VEGF121, the shortest form, was secreted and freely soluble in tissue culture medium. VEGF189 was secreted, but was almost entirely bound to the cell surface or extracellular matrix. VEGF165 displayed an intermediary behavior. Suramin induced the release of VEGF189, permitting its characterization as a more basic protein with higher affinity for heparin than VEGF165 or VEGF121, but with similar endothelial cell mitogenic activity. Heparin, heparan sulfate, and heparinase all induced the release of VEGF165 and VEGF189, suggesting heparin-containing proteoglycans as candidate VEGF-binding sites. Finally, VEGF165 and VEGF189 were released from their bound states by treatment with plasmin. The released 34-kDa dimeric species are active as endothelial cell mitogens and as vascular permeability agents. We conclude that the bioavailability of VEGF may be regulated at the genetic level by alternative splicing that determines whether VEGF will be soluble or incorporated into a biological reservoir and also through proteolysis following plasminogen activation.  相似文献   

9.
The two most abundant secreted isoforms of vascular endothelial growth factor A (VEGF(165) and VEGF(121)) are formed as a result of differential splicing of the VEGF-A gene. VEGF(165) and VEGF(121) share similar affinities at the isolated VEGF receptor (VEGFR)-2 but have been previously demonstrated to have differential ability to activate VEGFR-2-mediated effects on endothelial cells. Herein we investigate whether the recently described VEGF(165) isoform-specific receptor neuropilin-1 (Npn-1) is responsible for the difference in potency observed for these ligands. We demonstrate that although VEGFR-2 and Npn-1 form a complex, this complex does not result in an increase in VEGF(165) binding affinity. Therefore, the differential activity of VEGF(165) and VEGF(121) cannot be explained by a differential binding affinity for the complex. Using an antagonist that competes for VEGF(165) binding at the VEGFR-2.Npn-1 complex, we observe specific antagonism of VEGF(165)-meditated phosphorylation of VEGFR-2 without affecting the VEGF(121) response. These data indicate that the formation of the complex is responsible for the increased potency of VEGF(165) versus VEGF(121). Taken together, these data suggest a receptor-clustering role for Npn-1, as opposed to Npn-1 behaving as an affinity-converting subunit.  相似文献   

10.
The aim of this study was to evaluate the effect of vascular endothelial growth factor-A(165) (VEGF-A(165)) on the in vitro development of goat secondary preantral follicles. Preantral follicles (≥150?μm in diameter) were isolated from the ovaries of adult mixed-breed goats and individually cultured for 18?days in αMEM in the absence (control) or presence of VEGF-A(165) at concentrations of 10?ng/ml (VEGF10) and 100?ng/ml (VEGF100). Analyses of follicular survival, diameter, antrum formation and rate of daily growth were performed every 6?days. At the end of the culture period, morphologically normal oocytes (≥110?μm in diameter) were taken for in vitro maturation (IVM). The results demonstrated that all follicles presented oocytes and granulosa cells that were morphologically normal and after labeling with calcein-AM, high rates of oocyte viability were observed in all treatments. The follicular diameter and the growth rate achieved in the presence of VEGF10 were higher than those of the control. Both treatments with VEGF-A(165) showed higher rates of oocyte recovery for IVM when compared with the control. Moreover, only the addition of VEGF-A(165) permitted oocytes grown in vitro to reach metaphase II. Thus, the addition of VEGF-A(165) to the culture medium improves the development of goat preantral follicles cultured in vitro, allowing the production of mature oocytes.  相似文献   

11.
The avian embryo is well suited for the study of blood vessel morphogenesis. This is especially true of investigations that focus on the de novo formation of blood vessels from mesoderm, a process referred to as vasculogenesis. To examine the cellular and molecular mechanisms regulating vasculogenesis, we developed a bioassay that employs intact avian embryos. Among the many bioactive molecules we have examined, vascular epithelial growth factor (VEGF) stands out for its ability to affect vasculogenesis. Using the whole-embryo assay, we discovered that VEGF induces a vascular malformation we refer to as hyperfusion. Our studies showed that microinjection of recombinant VEGF165 converted the normally discrete network of embryonic blood vessels into enlarged endothelial sinuses. Depending on the amount of VEGF injected and the time of postinjection incubation, the misbehavior of the primordial endothelial cells can become so exaggerated that for all practical purposes the embryo contains a single enormous vascular sinus; all normal vessels are subsumed into a composite vascular structure. This morphology is reminiscent of the abnormal vascular sinuses characteristic of certain neovascular pathologies. (J Histochem Cytochem 47:1351-1355, 1999)  相似文献   

12.
Vascular endothelial growth factor A (VEGF-A) is a promoter of neovascularization and thus a popular therapeutic target for diseases involving excessive growth of blood vessels. In this study, we explored the potential of the disaccharide sucrose octasulfate (SOS) to alter VEGF165 diffusion through Descemet's membrane. Descemet's membranes were isolated from bovine eyes and used as a barrier between two chambers of a diffusion apparatus to measure VEGF transport. Diffusion studies revealed a dramatic increase in VEGF165 transport in the presence of SOS, with little diffusion of VEGF165 across the membrane over a 10-h time course in the absence of SOS. Diffusion studies with VEGF121, a non-heparin binding variant of VEGF, showed robust diffusion with or without SOS. To determine a possible mechanism, we measured the ability of SOS to inhibit VEGF interactions with extracellular matrix (ECM), using cell-free and cell surface binding assays. Binding studies showed SOS had no effect on VEGF165 binding to either heparin-coated plates or endothelial cell surfaces at less than mg/ml concentrations. In contrast, we show that SOS inhibited VEGF165 binding to fibronectin in a dose dependent manner and dramatically accelerated the rate of release of VEGF165 from fibronectin. SOS also inhibited the binding of VEGF165 to fibronectin-rich ECM deposited by vascular smooth muscle cells. These results suggest that fibronectin-rich extracellular matrices serve as barriers to VEGF165 diffusion by providing a network of binding sites that can trap and sequester the protein. Since the content of Descemet's membrane is typical of many basement membranes it is possible that they serve throughout the body as formidable barriers to VEGF165 diffusion and tightly regulate its bioavailability and distribution within tissues.  相似文献   

13.

Background

Previous work in our laboratory demonstrated that hyperoxia suppressed the expression of vascular endothelial growth factor (VEGF) by the embryonic lung, leading to increased epithelial cell apoptosis and failure of explant airway growth and branching that was rescued by the addition of Vegf165. The aims of this study were to determine protective pathways by which VEGF isoforms attenuate hyperoxic lung growth retardation and to identify the target cell for VEGF action.

Methods

Timed pregnant CD-1 or fetal liver kinase (FLK1)-eGFP lung explants cultured in 3% or 50% oxygen were treated ± Vegf121, VEGF164/Vegf165 or VEGF188 in the presence or absence of anti-rat neuropilin-1 (NRP1) antibody or GO6983 (protein kinase C (PKC) pan-inhibitor) and lung growth and branching quantified. Immunofluorescence studies were performed to determine apoptosis index and location of FLK1 phosphorylation and western blot studies of lung explants were performed to define the signaling pathways that mediate the protective effects of VEGF.

Results

Heparin-binding VEGF isoforms (VEGF164/Vegf165 and VEGF188) but not Vegf121 selectively reduced epithelial apoptosis and partially rescued lung bud branching and growth. These protective effects required NRP1-dependent FLK1 activation in endothelial cells. Analysis of downstream signaling pathways demonstrated that the VEGF-mediated anti-apoptotic effects were dependent on PKC activation.

Conclusions

Vegf165 activates FLK1-NRP1 signaling in endothelial cells, leading to a PKC-dependent paracrine signal that in turn inhibits epithelial cell apoptosis.  相似文献   

14.
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40ng/ml in the culture medium, but decreased at 80ng/ml. Under CoCl(2)-induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or anti-angiogenic activities of BMSCs.  相似文献   

15.
Angiogenesis, the growth of new blood vessels, is regulated by a number of factors, including hypoxia and vascular endothelial growth factor (VEGF). Although the effects of hypoxia have been studied intensely, less attention has been given to other extracellular parameters such as pH. Thus, the present study investigates the consequences of acidic pH on VEGF binding and activity in endothelial cell cultures. We found that the binding of VEGF165 and VEGF121 to endothelial cells increased as the extracellular pH was decreased from 7.5 to 5.5. Binding of VEGF165 and VEGF121 to endothelial extracellular matrix was also increased at acidic pH. These effects were, in part, a reflection of increased heparin binding, because VEGF165 and VEGF121 showed increased retention on heparin-Sepharose at pH 5.5 compared with pH 7.5. Consistent with these findings, soluble heparin competed for VEGF binding to endothelial cells under acidic conditions. However, at neutral pH (7.5) low concentrations of heparin (0.1-1.0 microg/ml) potentiated VEGF binding. Extracellular pH also regulated VEGF activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2). VEGF165 and VEGF121 activation of Erk1/2 at pH 7.5 peaked after 5 min, whereas at pH 6.5 the peak was shifted to 10 min. At pH 5.5, neither VEGF isoform was able to activate Erk1/2, suggesting that the increased VEGF bound to the cells at low pH was sequestered in a stored state. Therefore, extracellular pH might play an important role in regulating VEGF interactions with cells and the extracellular matrix, which can modulate VEGF activity.  相似文献   

16.
17.
Vascular endothelial growth factor (VEGF) is well characterized for its role in endothelial cell differentiation and vascular tube formation. Alternate splicing of the VEGF gene in mice results in various VEGF-A isoforms, including VEGF-121 and VEGF-165. VEGF-165 is the most abundant isoform in the kidney and has been implicated in glomerulogenesis. However, its role in the tubular epithelium is not known. We demonstrate that VEGF-165 but not VEGF-121 induces single-cell branching morphogenesis and multicellular tubulogenesis in mouse renal tubular epithelial cells and that these morphogenic effects require activation of the phosphatidylinositol 3-kinase (PI 3-K) and, to a lesser degree, the extracellular signal-regulated kinase and protein kinase C signaling pathways. Further, VEGF-165-stimulated sheet migration is dependent only on PI 3-K signaling. These morphogenic effects of VEGF-165 require activation of both VEGF receptor 2 (VEGFR-2) and neuropilin-1 (Nrp-1), since neutralizing antibodies to either of these receptors or the addition of semaphorin 3A (which blocks VEGF-165 binding to Nrp-1) prevents the morphogenic response and the phosphorylation of VEGFR-2 along with the downstream signaling. We thus conclude that in addition to endothelial vasculogenesis, VEGF can induce renal epithelial cell morphogenesis in a Nrp-1-dependent fashion.  相似文献   

18.
Vascular endothelial growth factor (VEGF)mRNA undergoes alternative splicing events that generate four different homodimeric isoforms, VEGF121, VEGF165, VEGF189, or VEGF206. VEGF121 is a nonheparin-binding acidic protein, which is freely diffusible. The longer forms, VEGF189 or VEGF206, are highly basic proteins tightly bound to extracellular heparin-containing proteoglycans. VEGF165 has intermediate properties. To determine the localization of VEGF isoforms, transfected human embryonic kidney CEN4 cells expressing VEGF165, VEGF189, or VEGF206 were stained by immunofluorescence with a specific monoclonal antibody. The staining was found in patches and streaks suggestive of extracellular matrix (ECM). VEGF165 was observed largely in Golgi apparatus-like structures. Immunogold labeling of cells expressing VEGF189 or VEGF206 revealed that the staining was localized to the subepithelial ECM. VEGF associated with the ECM was bioactive, because endothelial cells cultured on ECM derived from cells expressing VEGF189 or VEGF206 were markedly stimulated to proliferate. In addition, ECM-bound VEGF can be released into a soluble and bioactive form by heparin or plasmin. ECM-bound VEGF189 and VEGF206 have molecular masses consistent with the intact polypeptides. The ECM may represent an important source of VEGF and angiogenic potential.  相似文献   

19.
Endothelial precursor cells respond to molecular cues to migrate and assemble into embryonic blood vessels, but the signaling pathways involved in vascular patterning are not well understood. We recently showed that avian vascular patterning cues are recognized by mammalian angioblasts derived from somitic mesoderm through analysis of mouse-avian chimeras. To determine whether stem cell-derived endothelial cells/progenitors also recognize global patterning signals, murine ES cell-derived embryoid bodies (EBs) were grafted into avian hosts. ES cell-derived murine endothelial cells/progenitors migrated extensively and colonized the appropriate host vascular beds. They also formed mosaic vessels with avian endothelial cells. Unlike somite derived-endothelial cells, ES cell-derived endothelial cells/progenitors migrated across the host embryonic midline to the contralateral side. To determine the role of VEGF signaling in embryonic vascular patterning, EBs mutant for a VEGF receptor (flk-1(-/-)) or a signal (VEGF-A(-/-)) were grafted into quail hosts. Flk-1(-/-) EB grafts produced only rare endothelial cells that did not migrate or assemble into vessels. In contrast, VEGF-A(-/-) EB grafts produced endothelial cells that resembled wild-type and colonized host vascular beds, suggesting that host-derived signals can partially rescue mutant graft vascular patterning. VEGF-A(-/-) graft endothelial cells/progenitors crossed the host midline with much lower frequency than wild-type EB grafts, indicating that graft-derived VEGF compromised the midline barrier when present. Thus, ES cell-derived endothelial cells/progenitors respond appropriately to global vascular patterning cues, and they require the VEGF signaling pathway to pattern properly. Moreover, EB-avian chimeras provide an efficient way to screen mutations for vascular patterning defects.  相似文献   

20.
Vascular endothelial growth factor (VEGF) gene gives rise to several distinct isoforms of VEGF, which differ in their expression patterns as well as their biochemical and biological properties. We examined the expression levels of VEGF isoforms and their receptors in the medial and lateral meniscus of rabbits under normal physiologic conditions as well their expression levels after 8 and 24 h of systemic normobaric hypoxia (13%). VEGF121 is the most abundant VEGF isoform in the medial and lateral meniscus, followed by VEGF165, VEGF189, and VEGF183. While the soluble VEGF121 and VEGF165 are only upregulated at 8 h of hypoxia, the membrane-bound VEGF183 and VEGF189 are further increased at 24 h. VEGFR-2 is expressed at a much higher level than VEGFR-1 under normal conditions, and both receptors are upregulated under hypoxia. Differential expression levels under normoxia as well as a differential response to hypoxia may indicate different functions of VEGF isoforms in the meniscus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号