首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

2.
Small birch plants were grown for up to 80 d in a climate chamber at varied relative addition rates of nitrogen in culture solution, and at ambient (350 μmol mol-1) or elevated (700 μmol mol-1) concentrations of CO2. The relative addition rate of nitrogen controlled relative growth rate accurately and independently of CO2 concentration at sub-optimum levels. During free access to nutrients, relative growth rate was higher at elevated CO2. Higher values of relative growth rate and net assimilation rate were associated with higher values of plant N-concentration. At all N-supply rates, elevated CO2 resulted in higher values of net assimilation rate, whereas leaf weight ratio was independent of CO2. Specific leaf area (and leaf area ratio) was less at higher CO2 and at lower rates of N-supply. Lower values of specific leaf area were partly because of starch accumulation. Nitrogen productivity (growth rate per unit plant nitrogen) was higher at elevated CO2. At sub-optimal N-supply, the higher net assimilation rate at elevated CO2 was offset by a lower leaf area ratio. Carbon dioxide did not affect root/shoot ratio, but a higher fraction of plant dry weight was found in roots at lower N-supply. In the treatment with lowest N-supply, five times as much root length was produced per amount of plant nitrogen in comparison with optimum plants. The specific fine root length at all N-supplies was greater at elevated CO2. These responses of the root system to lower N-supply and elevated CO2 may have a considerable bearing on the acquisition of nutrients in depleted soils at elevated CO2. The advantage of maintaining steady-state nutrition in small plants while investigating the effects of elevated CO2 on growth is emphasized.  相似文献   

3.
Naturally regenerated Scots pines (Pinus sylvestris L.), aged 28–30 years old, were grown in open-top chambers and subjected in situ to three ozone (O3) regimes, two concentrations of CO2, and a combination of O3 and CO2 treatments From 15 April to 15 September for two growing seasons (1994 and 1995). The gas exchanges of current-year and 1-year-old shoots were measured, along with the nitrogen content of needles. In order to investigate the factors underlying modifications in photosynthesis, five parameters linked to photosynthetic performance and three to stomatal conductance were determined. Elevated O3 concentrations led to a significant decline in the CO2 compensation point (Г*), maximum RuP2-saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), maximum stomatal conductance (gsmax), and sensitivity of stomatal conductance to changes in leaf-to-air vapour pressure difference (?gs/?Dv) in both shoot-age classes. However, the effect of elevated O3 concentrations on the respiration rate in light (Rd) was dependent on shoot age. Elevated CO2(700 μmol mol?1) significantly decreased Jmax and gsmax but increased Rd in 1-year-old shoots and the ?gs/?Dv in both shoot-age classes. The interactive effects of O3 and CO2 on some key parameters (e.g. Vcmax and Jmax) were significant. This may be closely related to regulation of the maximum stomatal conductance and stomatal sensitivity induced by elevated CO2. As a consequence, the injury induced by O3 was reduced through decreased ozone uptake in 1-year-old shoots, but not in the current-year shoots. Compared to ambient O3 concentration, reduced O3 concentrations (charcoal-filtered air) did not lead to significant changes in any of the measured parameters. Compared to the control treatment, calculations showed that elevated O3 concentrations decreased the apparent quantum yield by 15% and by 18%, and the maximum rate of photosynthesis by 21% and by 29% in the current-year and 1-year-old shoots, respectively. Changes in the nitrogen content of needles resulting from the various treatments were associated with modifications in photosynthetic components.  相似文献   

4.
Decomposition of soybean grown under elevated concentrations of CO2 and O3   总被引:1,自引:0,他引:1  
A critical global climate change issue is how increasing concentrations of atmospheric CO2 and ground‐level O3 will affect agricultural productivity. This includes effects on decomposition of residues left in the field and availability of mineral nutrients to subsequent crops. To address questions about decomposition processes, a 2‐year experiment was conducted to determine the chemistry and decomposition rate of aboveground residues of soybean (Glycine max (L.) Merr.) grown under reciprocal combinations of low and high concentrations of CO2 and O3 in open‐top field chambers. The CO2 treatments were ambient (370 μmol mol?1) and elevated (714 μmol mol?1) levels (daytime 12 h averages). Ozone treatments were charcoal‐filtered air (21 nmol mol?1) and nonfiltered air plus 1.5 times ambient O3 (74 nmol mol?1) 12 h day?1. Elevated CO2 increased aboveground postharvest residue production by 28–56% while elevated O3 suppressed it by 15–46%. In combination, inhibitory effects of added O3 on biomass production were largely negated by elevated CO2. Plant residue chemistry was generally unaffected by elevated CO2, except for an increase in leaf residue lignin concentration. Leaf residues from the elevated O3 treatments had lower concentrations of nonstructural carbohydrates, but higher N, fiber, and lignin levels. Chemical composition of petiole, stem, and pod husk residues was only marginally affected by the elevated gas treatments. Treatment effects on plant biomass production, however, influenced the content of chemical constituents on an areal basis. Elevated CO2 increased the mass per square meter of nonstructural carbohydrates, phenolics, N, cellulose, and lignin by 24–46%. Elevated O3 decreased the mass per square meter of these constituents by 30–48%, while elevated CO2 largely ameliorated the added O3 effect. Carbon mineralization rates of component residues from the elevated gas treatments were not significantly different from the control. However, N immobilization increased in soils containing petiole and stem residues from the elevated CO2, O3, and combined gas treatments. Mass loss of decomposing leaf residue from the added O3 and combined gas treatments was 48% less than the control treatment after 20 weeks, while differences in decomposition of petiole, stem, and husk residues among treatments were minor. Decreased decomposition of leaf residues was correlated with lower starch and higher lignin levels. However, leaf residues only comprised about 20% of the total residue biomass assayed so treatment effects on mass loss of total aboveground residues were relatively small. The primary influence of elevated atmospheric CO2 and O3 concentrations on decomposition processes is apt to arise from effects on residue mass input, which is increased by elevated CO2 and suppressed by O3.  相似文献   

5.
A study was conducted in 21-year-old loblolly pine (Pinus taeda L.) trees growing in plantation in north central Georgia, USA. The experiment used branch chambers to impose treatments of ambient, ambient +165 and ambient + 330 μmol mol?1 CO2. After one growing season there was no indication of acclimation to elevated CO2. In August and September, carbon assimilation, measured by two different methods, was twice as high at ambient +330 μmol mol?1 CO2 than at ambient. Dark respiration was suppressed by 6% at ambient +165 and by 14% at ambient + 330 μmol mol?1 CO2. This suppression was immediate, and not an effect of exposure to elevated CO2 during growth, since respiration was reduced by the same amount in all treatments when measured at a high CO2 concentration. Elevated CO2 increased the growth of foliage and woody tissue. It also increased instantaneous transpiration efficiency, but it had no effect on stomatal conductance. Since the soil at the study site had low to moderate fertility, these results suggest that the growth potential of forests on many sites may be enhanced by global increases in atmospheric CO2, concentration.  相似文献   

6.
Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast‐ growing old‐field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol?1, ambient) and future‐ predicted (700 μmol mol?1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2‐induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.  相似文献   

7.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

8.
Two clones of 5-year-old Norway spruce [Picea abies (L.) Karst.] were exposed to two atmospheric concentrations of CO2 (350 and 750 μmol mol?1) and O3 (20 and 75nmolmol?1) in a phytotron at the GSF-Forschung-szentrum (Munich) over the course of a single season (April to October). The phytotron was programmed to recreate an artificial climate similar to that at a high elevation site in the Inner Bavarian Forest, and trees were grown in large containers of forest soil fertilized to achieve contrasting levels of potassium nutrition, designated well-fertilized or K-deficient. Measurements of the rate of net CO2 assimilation were made on individual needle year age classes over the course of the season, chlorophyll fluorescence kinetics were recorded after approximately 23 weeks, and seasonal changes in non-structural carbohydrate composition of the current year's foliage were monitored. Ozone was found to have contrasting effects on the rate of net CO2 assimilation in different needle age classes. After c. 5 months of fumigation, elevated O3 increased (by 33%) the rate of photosynthesis in the current year's needles. However, O3 depressed (by 30%) the photo-synthetic rate of the previous year's needles throughout the period of exposure. Chlorophyll fluorescence measurements indicated that changes in photosystem II electron transport played no significant role in the effects of O3 on photosynthesis. The reasons for the contrasting effects of O3 on needles of different ages are discussed in the light of other recent findings. Although O3 enhanced the rate at which CO2 was fixed in the current year's foliage, this was not reflected in increases in the non-structural carbohydrate content of the needles. The transfer of ambient CO2-grown trees to a CO2-enriched atmosphere resulted in marked stimulation in the photosynthetic rate of current and previous year's foliage. However, following expansion of the current year's growth, the photosynthetic rate of the previous year's foliage declined. The extent of photosynthetic adjustment in response to prolonged exposure to elevated CO2 depended upon the clone, providing evidence of intraspecific variation in the long-term response of photosynthesis to elevated CO2. The increase in photosynthesis induced by CO2 enrichment was associated with increased foliar concentrations of glucose, fructose and starch (but no change in sucrose) in the new growth. CO2 enrichment significantly enhanced the photosynthetic rate of K-deficient needles, but there was a strong CO2soil interaction in the current year's needles, indicating that the long-term response of trees to a high CO2 environment may depend on soil fertility. Although the rate of photosynthesis and non-structural carbohydrate content of the new needles were increased in O3-treated plants grown at higher levels of CO2, there was no evidence that elevated CO2 provided additional protection against O3 damage. Simultaneous exposure to elevated O3 modified the effects of elevated CO2 on needle photosynthesis and non-structural carbohydrate content, emphasizing the need to take into account not only soil nutrient status but also the impact of concurrent increases in photochemical oxidant pollution in any serious consideration of the effects of climate change on plant production.  相似文献   

9.
Potato plants (Solanum tuberosum L. cv. Bintje) were grown to maturity in open-top chambers under three carbon dioxide (CO2; ambient and 24 h d−1 seasonal mean concentrations of 550 and 680 μmol mol−1) and two ozone levels (O3; ambient and an 8 h d−1 seasonal mean of 50 nmol mol−1). Chlorophyll content, photosynthetic characteristics, and stomatal responses were determined to test the hypothesis that elevated atmospheric CO2 may alleviate the damaging influence of O3 by reducing uptake by the leaves. Elevated O3 had no detectable effect on photosynthetic characteristics, leaf conductance, or chlorophyll content, but did reduce SPAD values for leaf 15, the youngest leaf examined. Elevated CO2 also reduced SPAD values for leaf 15, but not for older leaves; destructive analysis confirmed that chlorophyll content was decreased. Leaf conductance was generally reduced by elevated CO2, and declined with time in the youngest leaves examined, as did assimilation rate (A). A generally increased under elevated CO2, particularly in the older leaves during the latter stages of the season, thereby increasing instantaneous transpiration efficiency. Exposure to elevated CO2 and/or O3 had no detectable effect on dark-adapted fluorescence, although the values decreased with time. Analysis of the relationships between assimilation rate and intercellular CO2 concentration and photosynthetically active photon flux density showed there was initially little treatment effect on CO2-saturated assimilation rates for leaf 15. However, the values for plants grown under 550 μmol mol−1 CO2 were subsequently greater than in the ambient and 680 μmol mol−1 treatments, although the beneficial influence of the former treatment declined sharply towards the end of the season. Light-saturated assimilation was consistently greater under elevated CO2, but decreased with time in all treatments. The values decreased sharply when leaves grown under elevated CO2 were measured under ambient CO2, but increased when leaves grown under ambient CO2 were examined under elevated CO2. The results obtained indicate that, although elevated CO2 initially increased assimilation and growth, these beneficial effects were not necessarily sustained to maturity as a result of photosynthetic acclimation and the induction of earlier senescence.  相似文献   

10.
The interactive effects of increased carbon dioxide (CO2) concentration and ultraviolet-B (UV-B, 280–320 nm) radiation on Acacia karroo Hayne, a C3 tree, and Themeda triandra Forsk., a C4 grass, were investigated. We tested the hypothesis that A. karroo would show greater CO2-induced growth stimulation than T. triandra, which would partially explain current encroachment of A. karroo into C4 grasslands, but that increased UV-B could mitigate this advantage. Seedlings were grown in open-top chambers in a greenhouse in ambient (360 μmol mol-1) and elevated (650 μmol mol-1) CO2, combined with ambient (1.56 to 8.66 kJ m-2 day-1) or increased (2.22 to 11.93 kJ m-2 day-1) biologically effective (weighted) UV-B irradiances. After 30 weeks, elevated CO2 had no effect on biomass of A. karroo, despite increased net CO2 assimilation rates. Interaction between UV-B and CO2 on stomatal conductance was found, with conductances decreasing only where elevated CO2 and UV-B were supplied separately. Increases in water use efficiencies, foliar starch concentrations, root nodule numbers and total nodule mass were measured in elevated CO2. Elevated UV-B caused only an increase in foliar carbon concentrations. In T. triandra, net CO2 assimilation rates were unaffected in elevated CO2, but stomatal conductances and foliar nitrogen concentrations decreased, and water use efficiencies increased. Biomass of all vegetative fractions, particularly leaf sheaths, was increased in elevated CO2. and was accompanied by increased leaf blade lengths and individual leaf and leaf sheath masses. However, tiller numbers were reduced in elevated CO2. Significantly moderating effects of elevated UV-B were apparent only in individual masses of leaf blades and sheaths, and in total sheath and shoot biomass. The direct CO2-induced growth responses of the species therefore do not support the hypothesis of CO2-driven woody encroachment of C4 grasslands. Rather, differential changes in resource use efficiency between grass and woody species, or morphological responses of grass species, could alter the competitive balance. Increased UV-B radiation is unlikely to substantially alter the CO2 response of these species.  相似文献   

11.
Among plants grown under enriched atmospheric CO2, root:shoot balance (RSB) theory predicts a proportionately greater allocation of assimilate to roots than among ambient‐grown plants. Conversely, defoliation, which decreases the plant's capacity to assimilate carbon, is predicted to increase allocation to shoot. We tested these RSB predictions, and whether responses to CO2 enrichment were modified by defoliation, using Heterotheca subaxillaris, an annual plant native to south‐eastern USA. Plants were grown under near‐ambient (400 μmol mol?1) and enriched (700 μmol mol?1) levels of atmospheric CO2. Defoliation consisted of the weekly removal of 25% of each new fully expanded, but not previously defoliated, leaf from either rosette or bolted plants. In addition to dry mass measurements of leaves, stems, and roots, Kjeldahl N, protein, starch and soluble sugars were analysed in these plant components to test the hypothesis that changes in C:N uptake ratio drive shifts in root:shoot ratio. Young, rapidly growing CO2‐enriched plants conformed to the predictions of RSB, with higher root:shoot ratio than ambient‐grown plants (P < 0.02), whereas older, slower growing plants did not show a CO2 effect on root:shoot ratio. Defoliation resulted in smaller plants, among which both root and shoot biomass were reduced, irrespective of CO2 treatment (P < 0.03). However, H. subaxillaris plants were able to compensate for leaf area removal through flexible shoot allocation to more leaves vs. stem (P < 0.01). Increased carbon availability through CO2 enrichment did not enhance the response to defoliation, apparently because of complete growth compensation for defoliation, even under ambient conditions. CO2‐enriched plants had higher rates of photosynthesis (P < 0.0001), but this did not translate into increased final biomass accumulation. On the other hand, earlier and more abundant yield of flower biomass was an important consequence of growth under CO2 enrichment.  相似文献   

12.
Increases in atmospheric CO2 concentration ([CO2]) can lead to global climate change and theoretically could enhance carbon (C) deposition in soil, but data on this complex issue are contradictory. One approach for clarifying the diverse forces influencing plant‐derived C in the rhizosphere involves defining how elevated [CO2] alters the fundamental process of C transfer from plant roots to the soil. We examine here how a step increase in [CO2] affects the innate influx and efflux components of root exudation in axenic plants, as one foundation for understanding how climate change may affect rhizodeposition. Increasing [CO2] from 425 to 850 μmol mol?1 during short‐term trials enhanced shoot and root dry weight (P<0.01) of annual rye grass (Lolium multiflorum Lam.) and medic (Medicago truncatula L.) but had no effect on growth of maize (Zea mays L.). Root amino‐acid flux in the same plants changed only in maize, which increased the efflux rate (nmol g root fresh weight?1 h?1) of six amino acids (arginine, alanine, proline, tyrosine, lysine and leucine) significantly (P<0.05) under elevated [CO2]. None of the three plant species altered the steady‐state concentration of 16 amino acids released into a hydroponic solution with changing [CO2], apparently because amino‐acid influx rates, measured at 2.5 μm , consistently exceeded efflux rates. Indeed, plants recovered amino acids at rates 94–374% higher than they were lost from roots regardless of [CO2]. These results indicate that, in theory, any effect of [CO2] doubling on amino‐acid efflux can be offset by innately higher rates of influx. In practice, however, higher rates of amino‐acid cycling (i.e., efflux+influx) for each root segment (in C4 maize) or from more root tissue (in the two C3 species) should increase root exudation by plants exposed to elevated [CO2] as additional amino acids would be adsorbed to soil particles or be taken up by soil microorganisms.  相似文献   

13.
Arbutus unedo is a sclerophyllous evergreen, characteristic of Mediterranean coastal scrub vegetation. In Italy, trees of A. unedo have been found close to natural CO2 vents where the mean atmospheric carbon dioxide concentration is about 2200 μmol mol?1. Comparisons were made between trees growing in elevated and ambient CO2 concentrations to test for evidence of adaptation to long-term exposure to elevated CO2. Leaves formed at elevated CO2 have a lower stomatal density and stomatal index and higher specific leaf area than those formed at ambient CO2, but there was no change in carbon to nitrogen ratios of the leaf tissue. Stomatal conductance was lower at elevated CO2 during rapid growth in the spring. In mid-summer, under drought stress, stomatal closure of all leaves occurred and in the autumn, when stress was relieved, the conductance of leaves at both elevated and ambient CO2 increased. In the spring, the stomatal conductance of the new flush of leaves at ambient CO2 was higher than the leaves at elevated CO2, increasing instantaneous water use efficiency at elevated CO2. Chlorophyll fluorescence measurements suggested that elevated CO2 provided some protection against photoinhibition in mid-summer. Analysis of A/Ci curves showed that there was no evidence of either upward or downward regulation of photosynthesis at elevated CO2. It is therefore anticipated that A. unedo will have higher growth rates as the ambient CO2 concentrations increase.  相似文献   

14.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

15.
Ribulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations and their interactions on the photosynthetic limitation by RuBP regeneration. Soybean (Glycine max [L.] Merr. cv. Essex) was grown from seed to maturity in open-top field chambers in charcoal-filtered air (CF) either without (22 nmol O3 mol?1) or with added O3 (83 nmol mol?1) at ambient (AA, 369 μmol CO2 mol?1) or elevated CO2 (710 μmol mol?1). The RuBP pool size generally declined with plant age in all treatments when expressed on a unit leaf area and in all treatments but CF-AA when expressed per unit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) binding site. Although O3 in ambient CO2 generally reduced the RuBP pool per unit leaf area, it did not change the RuBP pool per unit Rubisco binding site. Elevated CO2, in CF or O3-fumigated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools were below 2 mol mol?1 binding site in all treatments for most of the season, indicating limiting RuBP regeneration capacity. These low RuBP pools resulted in increased RuBP regeneration via faster RuBP turnover, but only in CF air and during vegetative and flowering stages at elevated CO2. Also, the low RuBP pool sizes did not always reflect RuBP consumption rates or the RuBP regeneration limitation relative to potential carboxylation (%RuBP). Rather, %RuBP increased linearly with decrease in the RuBP pool turnover time. These data suggest that amelioration of damage from O3 by elevated atmospheric CO2 to the RuBP regeneration may be in response to changes in the Rubisco carboxylation.  相似文献   

16.
Field‐grown yellow‐poplar (Liriodendron tulipifera L.) werefumigated from May to October in 1992–96 within open‐topchambers to determine the impact of ozone (O3) aloneor combined with elevated carbon dioxide (CO2) on saplinggrowth. Treatments were replicated three times and included: charcoal‐filteredair (CF); 1 × ambient ozone (1 × O3);1·5 × ambient ozone (1·5 × O3);1·5 × ambient ozone plus 350 p.p.m.carbon dioxide (1·5 × O3 + CO2)(target of 700 p.p.m. CO2); and open‐air chamberlessplot (OA). After five seasons, the total cumulative O3 exposure (SUM00 = sumof hourly O3 concentrations during the study) rangedfrom 145 (CF) to 861 (1·5 × O3) p.p.m. × h (partsper million hour). Ozone had no statistically significant effecton yellow‐poplar growth or biomass, even though total root biomasswas reduced by 13% in the 1·5 × O3‐exposedsaplings relative to CF controls. Although exposure to 1·5 × O3 + CO2 hada stimulatory effect on yearly basal area growth increment aftertwo seasons, significant increases in shoot and root biomass (~ 60% increaserelative to all others) were not detected until the fifth season.After five seasons, the yearly basal area growth increment of saplingsexposed to 1·5 × O3 + CO2‐air increasedby 41% relative to all others. Based on this multi‐yearstudy, it appears that chronic O3 effects on yellow‐poplargrowth are limited and slow to manifest, and are consistent withprevious studies that show yellow‐poplar growth is not highly responsiveto O3 exposure. In addition, these results show thatenriched CO2 may ameliorate the negative effects of elevatedO3 on yellow‐poplar shoot growth and root biomass underfield conditions.  相似文献   

17.
The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3? from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3? than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3?, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3? at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems.  相似文献   

18.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   

19.
N2 fixation by Acacia species increases under elevated atmospheric CO2   总被引:1,自引:0,他引:1  
In the present study the effect of elevated CO2 on growth and nitrogen fixation of seven Australian Acacia species was investigated. Two species from semi‐arid environments in central Australia (Acacia aneura and A. tetragonophylla) and five species from temperate south‐eastern Australia (Acacia irrorata, A. mearnsii, A. dealbata, A. implexa and A. melanoxylon) were grown for up to 148 d in controlled greenhouse conditions at either ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 concentrations. After establishment of nodules, the plants were completely dependent on symbiotic nitrogen fixation. Six out of seven species had greater relative growth rates and lower whole plant nitrogen concentrations under elevated versus normal CO2. Enhanced growth resulted in an increase in the amount of nitrogen fixed symbiotically for five of the species. In general, this was the consequence of lower whole‐plant nitrogen concentrations, which equate to a larger plant and greater nodule mass for a given amount of nitrogen. Since the average amount of nitrogen fixed per unit nodule mass was unaltered by atmospheric CO2, more nitrogen could be fixed for a given amount of plant nitrogen. For three of the species, elevated CO2 increased the rate of nitrogen fixation per unit nodule mass and time, but this was completely offset by a reduction in nodule mass per unit plant mass.  相似文献   

20.
An increase in concentration of atmospheric CO2 is one major factor influencing global climate change. Among the consequences of such an increase is the stimulation of plant growth and productivity. Below‐ground microbial processes are also likely to be affected indirectly by rising atmospheric CO2 levels, through increased root growth and rhizodeposition rates. Because changes in microbial community composition might have an impact on symbiotic interactions with plants, the response of root nodule symbionts to elevated atmospheric CO2 was investigated. In this study we determined the genetic structure of 120 Rhizobium leguminosarum bv. trifolii isolates from white clover plants exposed to ambient (350 μmol mol?1) or elevated (600 μmol mol?1) atmospheric CO2 concentrations in the Swiss FACE (Free‐Air‐Carbon‐Dioxide‐Enrichment) facility. Polymerase Chain Reaction (PCR) fingerprinting of genomic DNA showed that the isolates from plants grown under elevated CO2 were genetically different from those isolates obtained from plants grown under ambient conditions. Moreover, there was a 17% increase in nodule occupancy under conditions of elevated atmospheric CO2 when strains of R. leguminosarum bv. trifolii isolated from plots exposed to CO2 enrichment were evaluated for their ability to compete for nodulation with those strains isolated from ambient conditions. These results indicate that a shift in the community composition of R. leguminosarum bv. trifolii occurred as a result of an increased atmospheric CO2 concentration, and that elevated atmospheric CO2 affects the competitive ability of root nodule symbionts, most likely leading to a selection of these particular strains to nodulate white clover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号