首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The protease-catalyzed, kinetically controlled synthesis of a precursor dipeptide of RGDS, Z-Asp-Ser-NH2 in organic solvents was studied. Alcalase, an industrial alkaline protease, was used to catalyze the synthesis of the target dipeptide in water-organic cosolvents systems with Z-Asp-OMe as the acyl donor and Ser-NH2 as the nucleophile. Acetonitrile was selected as the organic solvent from acetonitrile, ethanol, methanol, DMF, DMSO, ethyl acetate, 2-methyl-2-propanol, and chloroform tested under the experimental conditions. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including water content, temperature, pH, and reaction time on the Z-Asp-Ser-NH2 yields. The optimum conditions are pH 10.0, 35 degrees C, in acetonitrile/Na2CO3-NaHCO3 buffer system (85:15, v/v), 6 h, with a dipeptide yield of 75.5%.  相似文献   

2.
Trypsin-catalyzed, kinetically controlled synthesis of a precursor, dipeptide of thymopentin (TP-5), Bz-Arg-Lys-OH (or-OEt) in organic solvents was studied. Bz-Arg-OEt was used as the acyl donor and Lys-OH and Lys-OEt were used as the nucleophiles. Ethanol was selected as the organic solvent from ethanol, methanol, acetonitrile, and ethyl acetate tested under the experimental conditions. As expected, Lys-OEt is not a suitable nucleophile in trypsin-catalyzed reaction, due to its competition with the protective Arg-OEt as acyl donor for the active site of trypsin, while Lys-OH does not have this problem. The optimal reaction condition for the synthesis of Bz-Arg-Lys-OH was set up as 20% Tris-HCl buffer, pH 8.0, 35 degrees C for 6 h with the yield of 52.5%, or for 18-24 h with the yield of about 60%.  相似文献   

3.
The protease-catalyzed, kinetically controlled synthesis of a precursor dipeptide of thymopentin(TP-5), Z-Arg-Lys-NH2 in organic solvents was studied. Z-Arg-OMe was used as the acyl donor and Lys-NH2 was used as the nucleophile. An industrial alkaline protease alcalase and trypsin were used to catalyze the synthesis of the target dipeptide in water-organic cosolvent systems. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including organic solvents, water content, temperature, pH, and reaction time on the yield of Z-Arg-Lys-NH2. The optimum conditions using alcalase as the catalyst are pH 10.0, 35 degrees C, in acetonitrile/DMF/Na2CO3-NaHCO3 buffer system (80:10:10, V/V), 6 h, with the dipeptide yield of 71.1%. Compared with alcalase, the optimum conditions for trypsin are pH 8.0, 35 degrees C, in ethanol/Tris-HCl buffer system (80:20, V/V), 4 h, with the dipeptide yield of 76.1%.  相似文献   

4.
The protease-catalyzed, kinetically controlled synthesis of a precursor dipeptide, Z-Asp-Val-NH(2) of thymopentin (TP-5), in organic solvents was studied. Z-Asp-OMe and Val-NH(2) were used as the acyl donor and the nucleophile, respectively. An industrial alkaline protease alcalase was used to catalyze the synthesis of the target dipeptide in water-organic cosolvent systems. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including organic solvents, water content, temperature, pH, and reaction time on the yield of Z-Asp-Val-NH(2). The optimum conditions using alcalase as the catalyst are pH 10.0, 35 degrees C, in acetonitrile/Na(2)CO(3)-NaHCO(3) buffer system (9:1, V/V), reaction time 5 h, with a yield of 63%. The dipeptide product was confirmed by LC- MS.  相似文献   

5.
The tripeptide BzArgGlyAsp(NH(2))(2) was synthesized by a combination of chemical and enzymatic methods in this study. First of all, GlyAsp(NH(2))(2) was synthesized by a novel chemical method in three steps including chloroacetylation of L-aspartic acid, esterification of chloroacetyl L-aspartic acid and ammonolysis of chloroacetyl L-aspartic acid diethyl ester. Secondly, kinetically controlled synthesis of BzArgGlyAsp(NH(2))(2) catalyzed by trypsin in organic solvent was conducted. The optimum conditions are pH 8.0, 30 degrees C in ethanol/Tris-HCl buffer system (85:15, v/v) for 80 min in the maximum yield of 74.4%.  相似文献   

6.
A proteinase isolated from Thermus RT41a was immobilized to controlled pore glass beads and was used in the free and immobilized forms for peptide synthesis. The observed maximum yield was the same in both cases. a number of dipeptides were produced from amino acid esters and amides. The best acyl components, from those tested, were found to be Ac-Phe-OEt and Bz-Ala-OMe. Tur-NH(2), Trp-NH(2), Leu-pNA, and Val-pNA were all reactive nucleophiles.The kinetically controlled synthesis of Bz-ala-Tyr-NH(2) was optimized by studying the effect of pH, temperature, solvent concentration, ionic strength, and nucleophile and acyl donor concentration, ionic strength, and nucleophile and acyl donor concentration on the maximum yield. The initial conditions used were 25 mM Bz-ala-OMe, 25 mM Tyr-NH(2), 70 degrees C, pH 8.0, and 10% v/v dimethylformamide (DMF). The optimum conditions were 90% v/v DMF using 80 mM bz-Ala-OMe and 615 mM Tyr-NH(2) at 40 degrees C and pH 10. These conditions increased the maximum conversion from 0.75% to 26% (of the original ester concentration). In a number of other cosolvents, the best peptide yields were observed with acetonitrile and ethyl acetate. In 90% acetonitrile similar yields were observed to those in 90% DMF under optimized conditions except that the acyl donor and nucleophile concentrations could be reduced to 25 mM and 100mM, respectively. The effect of the blocking group on the nucleophile was also investigated; -betaNA and -pNA as blocking groups improved the yields markedly. The blocking and leaving groups of the acyldonor had no effect on the dipeptide yield. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
Solid-phase synthesis of dipeptides in low-water media was achieved using AOT ion-paired alpha-chymotrypsin solubilized in organic solvents. Multiple solvents and systematic variation of water activity, a(w), were used to examine the rate of coupling between N-alpha-benzyloxycarbonyl-L-phenylalanine methyl ester (Z-Phe-OMe) and leucine as a function of the reaction medium for both solid-phase and solution-phase reactions. In solution, the observed maximum reaction rate in a given solvent generally correlated with measures of hydrophobicity such as the log of the 1-octanol/water partitioning coefficient (log P) and the Hildebrand solubility parameter. The maximum rate for solution-phase synthesis (13 mmol/h g-enzyme) was obtained in a 90/10 (v/v) isooctane/tetrahydrofuran solvent mixture at an a(w) of 0.30. For the synthesis of dipeptides from solid-phase leucine residues, the highest synthetic rates (0.14-1.3 mmol/h g-enzyme) were confined to solvent environments that fell inside abruptly defined regions of solvent parameter space (e.g., log P > 2.3 and normalized electron acceptance index <0.13). The maximum rate for solid-phase synthesis was obtained in a 90/10 (v/v) isooctane/tetrahydrofuran solvent mixture at an a(w) of 0.14. In 90/10 and 70/30 (v/v) isooctane/tetrahydrofuran environments with a(w) set to 0.14, seven different N-protected dipeptides were synthesized on commercially available Tentagel support with yields of 74-98% in 24 h.  相似文献   

8.
An alpha-hydroxy acid derivative, alpha-butylglucoside lactate, was successfully prepared by enzymatic transesterification of alpha-butylglucoside with a lactate alkyl ester in a non-aqueous medium using immobilized lipase as biocatalyst. Ester synthesis in organic solvent was optimized. Solvent choice was made on the basis of substrate solubility and enzyme stability in the medium. A solvent-free reaction using butyllactate as lactate donor led to the highest yields. In the presence of 0.5M alphabutylglucoside and 100 g/L Novozym(R), a 67 % yield could be obtained within 40 h at 50 degrees C. However, the presence of butanol by-product limited the reaction to a maximum that could not be exceeded in closed systems. The elimination of the alcohol under reduced pressure resulted in the complete equilibrium shift of the transesterification reaction in favor of synthesis; below 15 mbars, more than 95% of 0.5M alpha-butylglucoside could be converted within 30 h. Moreover, simultaneous evaporation of water allowed hydrolysis of butyllactate to be eliminated. Consequently, a very high alpha-butylglucoside lactate concentration (170 g/) could be obtained in a single batch reaction. A single purification procedure, consisting of butyllactate extraction with hexane, enabled the product to be obtained at a purity above 95% (w/w). 1H and 13C NMR analysis later demonstrated that lactic acid was exclusively grafted onto the primary hydroxyl group of alphabutylglucoside.  相似文献   

9.
The tripeptide Bz-Arg-Gly-Asp(NH2)OH was synthesized by a combination of chemical and enzymatic methods in this study. Firstly, Gly-Asp-(NH2)2 was synthesized by a novel chemical method in three steps including chloroacetylation of l-aspartic acid, esterification of chloroacetyl l-aspartic acid and ammonolysis of chloroacetyl l-aspartic acid diethyl ester. Secondly, the linkage of the third amino acid (Bz-Arg-OEt) to Gly-Asp-(NH2)2 was completed by enzymatic method under kinetic control condition. An industrial alkaline protease alcalase was used in water–organic cosolvents systems. The synthesis reaction conditions were optimized by examining the effects of several factors including water content, temperature, pH and reaction time on the yield of the synthesis product Bz-Arg-Gly-Asp(NH2)OH. The optimum conditions are pH 8.0, 35 °C, in ethanol/Tris–HCl buffer system (85:15, v/v), 8 h with the tripeptide yield of 73.6%.  相似文献   

10.
Experimental conditions for the preparation of [LeuB30] insulin by coupling of des-AlaB30 insulin with Leu-OBu(t) were determined using Achromobacter protease I and trypsin as catalysts. Successful coupling required a large excess of the amine component (0.8 M), a high concentration of organic cosolvent (35-50%) and neutral pH of the reaction mixture. The coupling yield of Achromobacter protease I after 24 h at 37 degrees C was almost the same or a little higher than that at 25 degrees C. With trypsin, the coupling yield at 37 degrees C after 24 h was considerably lower than at 25 degrees C. This was partly ascribed to the difference in concentration of organic cosolvent at 37 degrees C and 25 degrees C; 35% and 50%, respectively, or possibly of enzyme stability at these temperatures. The maximum product yield was about 90% with both enzymes under optimal conditions. A preparative scale experiment was performed with Achromobacter protease I; the yield of [LeuB30] insulin was 51% using porcine insulin as the starting material. This semisynthetic insulin was identified by HPLC and amino acid analysis. No difference was observed in CD spectra between [LeuB30] insulin and human insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号