首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In brackish water the variety of marine and freshwater parasite species is considerably reduced. The distribution in brackish water of most marine endoparasites is restricted by the salinity tolerance of their hosts, most of the parasite species are more tolerant than their hosts. The influence of salinity and temperature on nine species has been examined; first stage larvae of Contracaecum aduncum develop in 0-32‰ salinity; Cryptocotyle lingua proved to be infective at salinities down to 4‰. The greatest resistance was found in Anisakis larvae from herring Clupea harengus , which survived for more than half a year. Parasites in the fish intestines appear to be unaffected by changing water salinities, as the osmolarity in the intestines stays nearly constant. Marine ectoparasites ( Acanthochondria depressa, Lepeophtheirus pectoralis ) survive about three times longer than freshwater species ( Piscicola geometra, Argulus foliaceus ) when salinity is 16‰. High temperature increases the effects of adverse salinities on parasites. There is evidence that none of these ecto-parasitic species can develop within the range of 7-20‰ salinity.  相似文献   

2.
Effects of salinity on the ionic balance and growth of juvenile turbot   总被引:7,自引:0,他引:7  
The effects of salinity changes (27, 19 and 10‰) on seawater-adapted juvenile turbot were studied on their plasma osmolarity and ion concentrations, on oxygen consumption, on gill Na+,K+-ATPase activity after 3 months and on growth parameters. All plasma concentrations (except chloride) were unchanged, suggesting that fish were well adapted to their environment. Oxygen consumption was significantly decreased in the 19 and 10‰ groups, where fish weighed significantly more 105 days after transfer than fish maintained in sea water. These results, and the fact that apparent food conversion rates were lower in a diluted environment, suggest that on a long term schedule growth conditions could be improved by adaptation to brackish waters (salinities between 10 and 19‰). The effects of transfer from sea water to 27, 19, 10 and 5‰ were also followed during the first 3 weeks. With salinity 10‰ a steady state was reached on day 21 with all plasma values within the same range. The significant differences observed in osmolarity, plasma ion concentrations and Na+,K+-ATPase activity 3 weeks after transfer of juveniles to 5‰ salinity, compared with transfers in higher salinities, suggest that there is a threshold of acclimation of turbot to a hypotonic environment.  相似文献   

3.
Arctic charr, Salvelinus alpinus , less than 150 mm in size were frequently captured at sea in northern Labrador in areas where salinities of 30‰ or higher had been recorded. These captures were inconsistent with many earlier reports for other areas that indicated Arctic charr less than 150 mm in size were not found at sea. A series of salinity challenge tests was carried out in the field, using wild Ikarut River charr, and in the laboratory, using cultured Fraser River charr, to understand more about the potential fate of these small fish. The results of challenge tests with small Arctic charr (< 120 mm) indicated that at intermediate salinities (10–20‰), these fish can readily survive. In laboratory tests with salinities at 30‰, survival was size dependent and would suggest that in natural situations, small charr would require periodic access to fresh or brackish water to stay alive. The influence of water temperature on salinity tolerance may be important when fish are exposed to temperatures that are below 0° C.  相似文献   

4.
The silver perch, Bidyanus bidyanus, is a native Australian freshwater fish of the highest aquaculture potential. The species is known to tolerate a certain extent of salinity. Silver perch juveniles were fed a commercial diet (45% protein) and reared at salinities 0, 4, 8 and 12 in order to assess weight gain, specific growth rate (SGR), food conversion ratio (FCR) and nutrient retention at these four salinities. Fish reared at salinity 4 (P < 0.05) showed the best weight gain, SGR, FCR and a significantly better performance. Nitrogen and phosphorus retention were also significantly better in fish reared at salinity 4 (P < 0.05).  相似文献   

5.
Among six species of juvenile fishes (<6 months old), stenohaline species (channel catfish Ictalurus punctatus and goldfish Carassius auratus ) had their highest specific growth rate ( G ) and most efficient food conversion ratio ( E C) and energy absorption efficiency ( I E) in fresh water. Three of the euryhaline species (rainbow trout Oncorhynchus mykiss , striped bass Morone saxatilis and Gulf sturgeon Acipenser oxyrinchus desotoi ) had higher G and had more efficient E C and I E in 3 and 9‰ salinities than in lower salinities (fresh water and 1‰). For brown trout Salmo trutta (age 3–4 months), 9‰ was above the optimum level for G and E C. However, I E for brown trout was not significantly different at 3 and 9‰ salinities. Over the salinity range tested, channel catfish had the largest change in G , E C and I E, while changes for euryhaline species were relatively small. Although all species tested survived and grew in all treatments, salinities as low as 1‰ adversely affected the stenohaline species, and 9‰ adversely affected brown trout.  相似文献   

6.
Salinity tolerances and plasma osmotic concentrations were determined in the fat sleeper, Dormitator maculatus , a common species in estuarine and coastal fresh waters along the Atlantic and Caribbean coasts of North, Central and South America. Analyses followed sequential laboratory acclimations to a series of ambient salinities at a constant temperature of 20 ± 1° C and photoperiod of 12L: 12D. These fish tolerated a range of ambient salinities from fresh water through a salinity of 75‰. Plasma osmotic concentrations were regulated at an essentially constant level in the salinity range from fresh water through a salinity of 50‰, beyond which plasma concentrations trended upward with increased ambient salinity. We conclude that D. maculatus , while truly euryhaline, docs not show the extreme euryhalme capabilities of several teleost fishes that are 'full-time' estuarine inhabitants.  相似文献   

7.
The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na+-K+-ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na+-K+-ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW- and HSW- acclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.  相似文献   

8.
Temperature and salinity tolerances of Tilapia rendalli were determined experimentally. Results indicate that they are tolerant over a wide range of temperatures (11-37°C), but are incapable of surviving in salinities above 19 ‰ The maximum salinity tolerance is at temperatures between 20–28°C. The osmotic concentration of the blood rises from 255 mosmol/1 in freshwater to 340 mosmol/1 in a salinity of 19‰ T. rendalli is restricted to the warmer waters of the Zambezi river system in central Africa and southwards to the Pongolo river, as well as certain tropical and subtropical brackish water lagoons and lakes. Evidence from these experiments suggest that the distribution of T. rendalli isgoverned by both temperature and salinity.  相似文献   

9.
We sought to identify environmental factors influencing crustacean zooplankton species richness in brackish lagoons and to elucidate whether crustacean zooplankton species richness and trophic structure of brackish lagoons differ among two regions with contrasting temperatures. We sampled 35 and 42 brackish lagoons (salinity ranging from 0.3 to 55‰) in Mediterranean Catalonia (NE Spain) and northern-temperate Denmark, respectively. No significant differences were found in total crustacean zooplankton species richness or cladoceran richness between the climatic regions. Calanoid richness was higher in Denmark than in Catalonia, while cyclopoid richness was higher in Catalonia. Salinity was the most important variable associated with zooplankton species richness in both regions, richness of total zooplankton species, cladocerans and cyclopoids being negatively related with salinity. In both regions, a shift occurred from dominance of large filter feeding cladoceran species at low salinities to copepods and small cladoceran species at higher salinities. Cladoceran richness increased with increasing total phosphorus, but was not influenced by total nitrogen or chlorophyll-a. Trophic structure in Mediterranean brackish lagoons showed a more pronounced seasonal variation than in north temperate brackish lagoons. Our results imply that the indirect effects of climate warming, such as changes in salinity and hydrology, will have a larger impact on brackish lagoon ecosystems than the increase in temperature per se.  相似文献   

10.
Influence of salinity on early development in the spined loach   总被引:1,自引:0,他引:1  
Spined loach Cobitis taenia developed successfully between 0·12 and 4·80‰ salinity. At 6·00‰, net production was strongly reduced, and development failed at or above 7·20‰. Below 0·12‰ S, net production became variable, indicating restrictive effects. In comparison with other primary freshwater fish species C. taenia has a low sensitivity to salinity. The upper limit for early development was equal to the highest salinity under which C. taenia adults are found along the Baltic coast. Therefore, salinity should not limit early development within the brackish habitats of spined loach.  相似文献   

11.
In line with current conservation efforts, some success in the captive breeding of the seahorse Hippocampus kuda (Teleostei: Syngnathidae) has been achieved. To evaluate the salinity tolerance of these hatchery‐bred juveniles, 9‐week‐old H. kuda were transferred without prior acclimatization from ambient full strength seawater (32–33 ppt) to salinities ranging from freshwater to 85 ppt. Survival, growth, and total body water content were determined after 4 and 18 days of exposure. Juvenile H. kuda are able to survive in dilute seawater (15 ppt) for at least 18 days without any compromise in growth (both wet and dry body weight), survival, and total body water. Fish abruptly transferred to freshwater succumbed within 4–24 h, while survival of 5 ppt‐reared fish decreased to ca. 65% in 18 days. Although 10 ppt‐reared seahorses had growth and survival comparable with the control (30 ppt seawater), total body water was significantly elevated indicating reduced adaptability. The upper limit of H. kuda salinity tolerance was 50 ppt. Fish reared at salinities ≥55 ppt succumbed within 24 h. Like several other marine teleosts, growth and survival of juvenile H. kuda tended to peak in diluted seawater salinities of 15 and 20 ppt. These results indicate the possibility of growing hatchery‐bred H. kuda in brackishwater environments.  相似文献   

12.
Abstract.  The effect of different temperatures and salinities on the cardiac frequency of the freshwater shrimp Palaemonetes antennarius is investigated. The results show that both temperature and salinity influence heart rate. Variations in water temperature are associated with changes in heart rate: variations higher than 8°C in 6 h affect not only heart rate, but also shrimp survival. After an initial rapid increase, the heart rate returns to initial values at saline concentrations of 15‰ and 30‰, whereas, at 20‰ salinity, the shrimps show a persistent decrease of heart rate throughout the test. The marked tolerance of variations of temperature and salinity suggests that P.   antennarius is well adapted to waters with large salinity and temperature oscillations. Cardiac frequency can be used as a valid indicator of physiological stress in this species.  相似文献   

13.
Salinity tolerance of young catfish, Clarias lazera (Burchell)   总被引:1,自引:0,他引:1  
Experiments were conducted to determine the adaptability of young catfish, Claria lazera , to various saline concentrations. Young catfish, total length 52–88 mm, were subjected to abrupt and gradual changes from fresh water (salinity = 0.14‰) to various salinities. Ninetyfour per cent survival occurred when the fish were transferred from fresh water to 25% sea water (salinity = 9.5‰ No fish survived higher salinities even through gradual change.  相似文献   

14.
Newly hatched larvae of the California killifish ( Fundulus parvipinnis ) reared in the laboratory, were tolerant of salinities from fresh water to 70‰. Their salinity tolerance was influenced by incubation salinity; larvae hatched in lower incubation salinities exhibited greater freshwater tolerance than those hatched in higher salinities. In gradual acclimation tests, the upper median lethal salinity for the larvae was 130‰. Freshwater tolerance of the larvae decreased with age; yolk sac larvae were completely tolerant of fresh water while larvae more than 15 days old were least resistant.  相似文献   

15.
胡宏友  张朝潮  李雄 《植物生态学报》2010,34(12):1377-1385
在室内人工模拟潮汐, 研究了4种盐度(0、10‰、25‰和35‰, 分别代表淡水、低盐、中盐和高盐)下秋茄(Kandelia candel)凋落叶分解过程中物质与能量动态的差异。结果表明, 高盐处理下的失重率和平均分解速率显著低于淡水和低盐处理, 而高盐下的半分解理论值则高于其他处理; 盐度对分解过程中的残叶氮磷变化动态有显著影响, 其中, 残叶氮的释放速率在实验后期会随着盐度的升高而上升, 高盐度下残叶总氮含量显著低于低盐或淡水处理; 而在分解第1周, 淡水或低盐处理能加速磷的释放, 但中高盐度残叶中总磷含量最终会低于淡水和低盐处理; 盐度同样能对残叶热值产生显著影响, 淡水和低盐处理下的碎屑热值要显著高于高盐处理下的残叶热值, 但不同盐度下分解的能量损失差异不显著。  相似文献   

16.
The spread of non-native Rio Grande cichlids (Herichthys cyanoguttatus) in southeast Louisiana includes brackish habitats. We studied the effects of three different salinity levels on the biology of juvenile H. cyanoguttatus for 13 months to determine the potential of this species to spread through local estuaries. The highest salinity tolerated was 30.0 psu, and these fish did not survive acclimation to the 32 psu treatment. Fish in brackish conditions grew slower than fish in freshwater conditions, indicating a potential long-term detriment to juvenile fish living in brackish conditions. Aggression levels were notably higher for fish in brackish (15 psu) vs. freshwater conditions. This persisted through the entire experiment even after acclimation back to freshwater. This study indicates that higher salinity habitats in Louisiana can be tolerated by this species. It also raises a question about the effect of higher salinities on aggressive behavior.  相似文献   

17.
The growth of 1-year-old Arctic cisco ( Coregonus autumnalis ) was monitored under laboratory conditions for fish acclimated to one of two temperatures (5 and 10° C) and one of five salinities (6, 12, 18,24, 30‰). Fish were maintained for 43 days at rations of 3% wet body weight per day at 5° C and 5% wet body weight per day at 10° C, with rations adjusted for weight gain every 7–12 days. Fish increased 9–11% in length and 55–71% in weight at 5° C, and 23–27% in length and 141–161% in weight at 10° C. Length and weight increased linearly over 43 days. There was a statistically significant effect of temperature on growth but no statistically significant effect of salinity. Higher growth rates at 10° C were partially attributable to significantly greater gross conversion efficiency at the higher temperature. Over the course of the experiment, the condition (weight per unit length) of all fish increased by 3·2 to 63·6% at 5° C and by 5·6 to 46·0% at 10° C. There was no discernible effect of salinity on condition at either temperature. These results demonstrate that, with salinity acclimation and high food ration, 1-year-old Arctic cisco can grow at equivalent rates across salinities ranging from 6 to 30‰. The ecological implications of the results are discussed.  相似文献   

18.
We investigated the effect of salinity on growth, survival, and condition of pinfish Lagodon rhomboides juveniles (36–80 mm standard length) in two laboratory experiments in July 2003 and June/July 2004. Our results show that juvenile pinfish grown in laboratory conditions under a range of salinities experience rapid growth and high survival in typical estuarine-like salinities (15–30 ppt). We also found that relative weight as an index of condition corroborates the idea that pinfish are well adapted to survive and grow in a wide range of salinities. Such rapid growth and high survival in a dynamic environment may afford juvenile pinfish potential ecological advantages over other estuarine-dependent fish species that are relatively more constrained by changes in salinity regime. Because coastal development is wide-spread throughout Gulf of Mexico and Atlantic estuaries, insights concerning the impacts of human-induced changes to estuarine environments are essential for effective management practices.  相似文献   

19.
Marine larvae that experience some sub-lethal stresses can show effects from those stresses after metamorphosis, even when they seem to recover from those stresses before metamorphosis. In this study we investigated the short and long-term effects of exposing the larvae of three calyptraeid gastropods (Crepidula fornicata, Crepidula onyx, and Crepipatella fecunda) to temporary reductions in salinity. Larvae of all three species showed slower larval growth rates, longer time to metamorphic competence, and substantial mortality after being stressed in seawater at salinities of 10, 15, and 20 for less than 48 h. Larval tolerance to low salinities varied widely within and among species, but longer stresses at lower salinities were generally more harmful to larvae. However, larvae in nearly all experiments that were able to metamorphose survived and grew normally as juveniles; there were no documented “latent effects.” For all three species, starving larvae in full-strength seawater was not as harmful as exposing larvae to low salinity stress, indicating that detrimental effects on larvae were caused by the salinity stress per se, rather than by an indirect effect of salinity stress on feeding. C. fornicata that were stressed with low salinity as juveniles were more tolerant of the stress than larvae: all stressed juveniles lived and showed reduced growth rates for no more than 3 days. Our data suggest that even though reduced salinity is clearly stressful to the larvae of these 3 gastropod species, metamorphosis seems to generally provide individuals with a fresh start.  相似文献   

20.
The two prawn species Palaemon adspersus Rathke and P. elegans Rathke differ in their distribution patterns in estuaries: P. adspersus occurs at lower salinities and also extends further into the Baltic than P. elegans . Yet, at low salinities adult survival does not differ between the two species. Reproductive success was, however, substantially reduced in P. elegans at low salinity, but not in P. adspersus . Berried P. elegans females from the Swedish west coast hatched significantly fewer clutches at 10%‰ than did P. adspersus females from the same locality. Furthermore, larval survival in P. elegans was significantly lower at 5 and 7.5‰ than in P. adspersus . At higher salinities (10 and 24.5‰) no interspecific differences in larval survival were found, except in one experiment where P. elegans larvae had a lower mortality. It is concluded that the different estuarine distributions of the two palaemonid prawn species result from these interspecific differences in reproductive success at low salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号