首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Tibetan macaque, which is endemic to China,is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature(IUCN)(2017). Short tandem repeats(STRs) refer to repetitive elements of genome sequence that range in length from 1–6 bp. They are found in many organisms and are widely applied in population genetic studies. To clarify the distribution characteristics of genome-wide STRs and understand their variation among Tibetan macaques,we conducted a genome-wide survey of STRs with next-generation sequencing of five macaque samples.A total of 1077 790 perfect STRs were mined from our assembly, with an N50 of 4 966 bp. Mono-nucleotide repeats were the most abundant, followed by tetraand di-nucleotide repeats. Analysis of GC content and repeats showed consistent results with other macaques. Furthermore, using STR analysis software(lob STR), we found that the proportion of base pair deletions in the STRs was greater than that of insertions in the five Tibetan macaque individuals(P0.05, t-test). We also found a greater number of homozygous STRs than heterozygous STRs(P0.05,t-test), with the Emei and Jianyang Tibetan macaques showing more heterozygous loci than Huangshan Tibetan macaques. The proportion of insertions and mean variation of alleles in the Emei and Jianyang individuals were slightly higher than those in the Huangshan individuals, thus revealing differences in STR allele size between the two populations.The polymorphic STR loci identified based on the reference genome showed good amplification efficiency and could be used to study population genetics in Tibetan macaques. The neighbor-joining tree classified the five macaques into two different branches according to their geographical origin,indicating high genetic differentiation between the Huangshan and Sichuan populations. We elucidated the distribution characteristics of STRs in the Tibetan macaque genome and provided an effective method for screening polymorphic STRs. Our results also lay a foundation for future genetic variation studies of macaques.  相似文献   

2.
The large amount of repeats, especially high copy repeats, in the genomes of higher animals and plants makes whole genome assembly (WGA) quite difficult. In order to solve this problem, we tried to identify repeats and mask them prior to assembly even at the stage of genome survey. It is known that repeats of different copy number have different probabilities of appearance in shotgun data, so based on this principle, we constructed a statistical model and inferred criteria for mathematically defined repeats (MDRs) at different shotgun coverages. According to these criteria, we developed software MDRmasker to identify and mask MDRs in shotgun data. With repeats masked prior to assembly, the speed of assembly was increased with lower error probability. In addition, clone-insert size affects the accuracy of repeat assembly and scaffold construction. We also designed length distribution of clone-inserts using our model. In our simulated genomes of human and rice, the length distribution of repeats is differ  相似文献   

3.
Qin BM  Chen X  Zhu JD  Pei DQ 《Cell research》2005,15(3):212-217
Lung cancer is one of the leading causes of death with one of the lowest survival rates. However, a subset of lung cancer patients who are of Asian origin and carry somatic mutations in epidermal growth factor receptor or EGFR have responded remarkable well to two tyrosine kinase inhibitors, gefitinib and erlotinib. While EGFR mutation profiles havebeen reported from Japan, South Korea, and Taiwan, there is no such report from mainland of China where the largest pool of patients reside. In this report, we identified ten somatic mutations from a total of 41 lung cancer patients in China. Among them, seven mutations were found in 17 adenocarcinomas. In contrast to previous reports, eight of these mutations are deletions in exon 19 and two of these deletions are homozygous. These results suggest that a large portion of Chinese adenocarcinoma patients could benefit from gefitinib or erlotinib. This unique mutation profile provides a rationale to develop the next generation of EGFR inhibitors more suitable for the Chinese population.  相似文献   

4.
The discovery of antibiotics is the miracle of modern medicine,which has contributed greatly to the protection of human health.However,in despite of medical advances to date,some quite inexplicable modern diseases are still haunting us.These chronic diseases are less fierce in fatality,but more permanently compromise the quality of patients′lives.In this paper,the relevant background knowledge about antibiotics were introduced and the relationship between antibiotics and several common chronic diseases was analyzed,in order to promote the rational use of antibiotics and the correct view on antibiotics.  相似文献   

5.
Stem cells and neurodegenerative diseases   总被引:1,自引:0,他引:1  
Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the de-velopment of old-aging society, the incidence of neurodegenerative diseases is on the increase. How-ever, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegen-erative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Hunt-ington’s disease and Amyotrophic lateral sclerosis/Lou Gehrig’s disease.  相似文献   

6.
正The journal Genomics,ProteomicsBioinformatics(GPB)is now inviting submissions to a special issue(to be published in the fall of 2018)on the topic of"Microbiome and Health".In the era of precision medicine,the human"2ndgenome",namely the human microbiome,is of increasing interest worldwide.Firstly,the human microbiome has been linked to various diseases including metabolic diseases,cancers,heart diseases,or brain disorders,and autoimmune diseases.Secondly,changes in the microbiome are known or hypothesized to be proxies for  相似文献   

7.
Personalized medicine aims to utilize genomic information about patients to tailor treatment.Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine,in that the patients’ genome wholly determines their treatment regimen.Gene therapy for retinal disorders is poised to become a clinical reality.The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery,immune system isolation,and availability for monitoring of any potential damage or side effects.Due to these advantages,clinical trials for gene therapy of retinal diseases are currently underway.A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease.In this review,we discuss the application of Next Generation Sequencing(NGS) to obtain such a diagnosis and identify disease causing genes,using retinal disorders as a case study.After reviewing ocular gene therapy,we discuss the application of NGS to the identification of novel Mendelian disease genes.We then compare current,array based mutation detection methods against next NGS-based methods in three retinal diseases:Leber’s Congenital Amaurosis,Retinitis Pigmentosa,and Stargardt’s disease.We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods,including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations.However,the relative difficulty of interpreting sequence results and the development of standardized,reliable bioinformatic tools remain outstanding concerns.In this review,recent advances NGS based molecular diagnoses are discussed,as well as their implications for the development of personalized medicine.  相似文献   

8.
Jin Xu  Linsen Du  Zilong Wen 《遗传学报》2012,39(9):435-442
Myelopoiesis is the process of producing all types of myeloid cells including monocytes/macrophages and granulocytes.Myeloid cells are known to manifest a wide spectrum of activities such as immune surveillance and tissue remodeling.Irregularities in myeloid cell development and their function are known to associate with the onset and the progression of a variety of human disorders such as leukemia.In the past decades,extensive studies have been carried out in various model organisms to elucidate the molecular mechanisms underlying myelopoiesis with the hope that these efforts will yield knowledge translatable into therapies for related diseases.Zebrafish has recently emerged as a prominent animal model for studying myelopoiesis,especially during early embryogenesis,largely owing to its unique properties such as transparent embryonic body and external development.This review introduces the methodologies used in zebrafish research and focuses on the recent research progresses of zebrafish myelopoiesis.  相似文献   

9.
Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by social behaviour of bird flocking or fish schooling. PSO can achieve better results in a faster, cheaper way compared with other bio-inspired computational methods, and there are few parameters to adjust in PSO. In this paper, we propose an improved PSO model for solving the optimal formation reconfiguration control problem for multiple UCAVs. Firstly, the Control Parameterization and Time Diseretization (CPTD) method is designed in detail. Then, the mutation strategy and a special mutation-escape operator are adopted in the improved PSO model to make particles explore the search space more efficiently. The proposed strategy can produce a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Series experimental results demonstrate the feasibility and effectiveness of the proposed method in solving the optimal formation reconfiguration control problem for multiple UCAVs.  相似文献   

10.
正The journal Genomics,ProteomicsBioinformatics(GPB)is now inviting submissions to a special issue(to be published in the fall of 2018)on the topic of‘‘Microbiome and Health’’.In the era of precision medicine,the humannamely the human microbiome,is of increasing interest worldwide.Firstly,the human microbiome has been linked to various diseases including metabolic diseases,cancers,heart diseases,or brain disorders,and autoimmune diseases.Secondly,changes in the microbiome are known or hypothesized to be proxies for environmental or host phenotypical changes.Thirdly,the rational alteration of disturbed human  相似文献   

11.
Huang  Yujie  Liu  Cong  Xiao  Chao  Chen  Xiaoying  Han  Xueli  Yi  Shaohua  Huang  Daixin 《Molecular biology reports》2021,48(6):5363-5369

Short tandem repeats (STRs) have been extensively used in forensic genetics. However, according to previous studies, the mutation rates of STRs are relatively high and are affected by many factors. Therefore, it is important to analyze STR mutations and determine the influence of underlying factors on STR mutation rates. Mutation rates of 28 autosomal STRs were determined from 8708 paternity testing cases in the Chinese Han population, and the relationships between STR mutation rates and population, sex, age, allele length and heterozygosity were investigated. A total of 279 mutations were observed at 27 loci in a total of 233,530 meiosis cases, including 273 (97.8%) one-step, 5 (1.8%) two-step and 1 (0.4%) three-step mutations. The overall average mutation rate was 1.19?×?10–3 (95% CI 1.06?×?10–3???1.34?×?10–3) ranging from 0 (TPOX) to 2.79?×?10–3 (D13S325). Mutation rate comparisons revealed statistically significant differences at several STRs among populations. Paternal mutations occurred more frequently than maternal mutations, at a ratio of 6.04:1, and the mutation rate tended to increase with paternal age. Moreover, our study revealed a bias towards contraction mutations for long alleles and expansion mutations for short alleles. No obvious bias was observed in the overall mutation direction. In addition, STR loci with higher expected heterozygosity (Hexp) tended to have higher mutation rates. This work revealed the relationships between STR mutation rates and several influencing factors, providing useful data and information for further research on STR mutations in forensic genetics.

  相似文献   

12.
Short tandem repeats (STRs) are units of 1–6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.  相似文献   

13.
In plants, mitochondrial sequence tandem repeats (STRs) have been associated with intragenomic recombination, a process held responsible for evolutionary outcomes such as gene regulation or cytoplasmic male-sterility. However, no link has been established between the recurrent accumulation of STRs and increased mutation rates in specific regions of the plant mtDNA genome. Herein, we surveyed this possibility by comparing, in a phylogenetic context, the variation of a STR-rich mitochondrial intron (nad5-4) with eleven mtDNA genes devoid of STRs within Abies (Pinaceae) and its related genera. This intron has been accumulating repeated stretches, generated by at least three-independent insertions, before the split of the two Pinaceae subfamilies, Abietoideae and Pinoideae. The last of these insertions occurred before the divergence of Abies and produced, exclusively within this genus, a tenfold increase of both the indel and substitution rates in the STR hotspot of the intron. The regions flanking the STRs harbored mutation rates as low as those estimated in mitochondrial genes devoid of repeated stretches. Further searches in complete plant mtDNA genomes, and previous studies reporting polymorphic mtSTRs, revealed that repeated stretches are common in all sorts of plants, but their accumulation in STR hotspots appears to be taxa specific. Our study suggests a new mutagenic role for repeated sequences in the plant mtDNA.  相似文献   

14.

Background

Polymorphic Y chromosome short tandem repeats (STRs) have been widely used in population genetic and evolutionary studies. Compared to di-, tri-, and tetranucleotide repeats, STRs with longer repeat units occur more rarely and are far less commonly used.

Principal Findings

In order to study the evolutionary dynamics of STRs according to repeat unit size, we analysed variation at 24 Y chromosome repeat loci: 1 tri-, 14 tetra-, 7 penta-, and 2 hexanucleotide loci. According to our results, penta- and hexanucleotide repeats have approximately two times lower repeat variance and diversity than tri- and tetranucleotide repeats, indicating that their mutation rate is about half of that of tri- and tetranucleotide repeats. Thus, STR markers with longer repeat units are more robust in distinguishing Y chromosome haplogroups and, in some cases, phylogenetic splits within established haplogroups.

Conclusions

Our findings suggest that Y chromosome STRs of increased repeat unit size have a lower rate of evolution, which has significant relevance in population genetic and evolutionary studies.  相似文献   

15.
16.
17.
The haplotypes at four polymorphic loci of theY chromosome were determined in 245 Caucasian males from 12 subpopulations. The data show that haplotype radiation occurred among Caucasians. Haplotype radiation was accompanied by recurrent mutations at STR loci that caused partial randomization of haplotype structure. The present distribution of alleles at short tandem repeats (STRs) can be explained by a mutation pattern similar to those described for autosomal STRs. The degree of variation among groups of subpopulations was assayed by using the Analysis of Molecular Variance. The results confirm a faster divergence of the Y chromosome as compared to the rest of the genome. Correspondence to: A. Novelletto  相似文献   

18.
二代测序技术的涌现推动了基因组学研究,特别是在疾病相关的遗传变异研究中发挥了重要作用.虽然大多数遗传变异类型都可以借助于各种二代测序分析工具进行检测,但是仍然存在局限性,比如短串联重复序列的长度变异.许多遗传疾病是由短串联重复序列的长度扩张导致的,尤其是亨廷顿病等多种神经系统疾病.然而,现在几乎没有工具能够利用二代测序检测长度大于测序读长的短串联重复序列变异.为了突破这一限制,我们开发了一个全新的方法,该方法基于双末端二代测序辨识短串联重复序列长度变异,并可估计其扩张长度,将其应用于一项基于全外显子组测序的运动神经元疾病临床研究中,成功地鉴定出致病的短串联重复序列长度扩张.该方法首次原创性地利用测序读长覆盖深度特征来解决短串联重复序列变异检测问题,在人类遗传疾病研究中具有广泛的应用价值,并且对于其他二代测序分析方法的开发具有启发性意义.  相似文献   

19.
It is widely appreciated that short tandem repeat (STR) variation underlies substantial phenotypic variation in organisms. Some propose that the high mutation rates of STRs in functional genomic regions facilitate evolutionary adaptation. Despite their high mutation rate, some STRs show little to no variation in populations. One such STR occurs in the Arabidopsis thaliana gene PFT1 (MED25), where it encodes an interrupted polyglutamine tract. Although the PFT1 STR is large (∼270 bp), and thus expected to be extremely variable, it shows only minuscule variation across A. thaliana strains. We hypothesized that the PFT1 STR is under selective constraint, due to previously undescribed roles in PFT1 function. We investigated this hypothesis using plants expressing transgenic PFT1 constructs with either an endogenous STR or synthetic STRs of varying length. Transgenic plants carrying the endogenous PFT1 STR generally performed best in complementing a pft1 null mutant across adult PFT1-dependent traits. In stark contrast, transgenic plants carrying a PFT1 transgene lacking the STR phenocopied a pft1 loss-of-function mutant for flowering time phenotypes and were generally hypomorphic for other traits, establishing the functional importance of this domain. Transgenic plants carrying various synthetic constructs occupied the phenotypic space between wild-type and pft1 loss-of-function mutants. By varying PFT1 STR length, we discovered that PFT1 can act as either an activator or repressor of flowering in a photoperiod-dependent manner. We conclude that the PFT1 STR is constrained to its approximate wild-type length by its various functional requirements. Our study implies that there is strong selection on STRs not only to generate allelic diversity, but also to maintain certain lengths pursuant to optimal molecular function.  相似文献   

20.
Trimeric and tetrameric short tandem repeats (STRs) represent a rich source of highly polymorphic markers in the human genome that may be studied with the polymerase chain reaction (PCR). We report the analysis of a multilocus genotype survey of 97-380 chromosomes in U.S. Black, White, Mexican-American, and Asian populations at five STR loci located on chromosomes 1, 4, 11, and X. The heterozygote frequencies of the loci ranged from 0.36 to 0.91 and the number of alleles from 6 to 20 for the 20 population and locus combinations. Relative allele frequencies exhibited differences between populations and unimodal, bimodal, and complex distributions. Although deviations were noted at some locus-population test combinations, genotype data from the loci were consistent overall with Hardy-Weinberg equilibrium by three tests. Population subheterogeneity within each ethnic group was not detected by two additional tests. No mutations were detected in a total of 860 meioses for two loci studied in the CEPH kindreds and five loci studied in other families. An indirect estimate of the mutation rates gave values from 2.3 x 10(-5) to 15.9 x 10(-5) for the five loci. Higher mutation rates appear to be associated with greater numbers of tandem repeats in the core motif. The most frequent genotype for all five loci combined appears to have a frequency of 7.59 x 10(-4). Together, these results suggest that trimeric and tetrameric STR loci are useful markers for the study of new mutations and genetic linkage analysis and for application to personal identification in the medical and forensic sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号