首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neff BD  Garner SR  Heath JW  Heath DD 《Heredity》2008,101(2):175-185
Detailed analysis of variation in reproductive success can provide an understanding of the selective pressures that drive the evolution of adaptations. Here, we use experimental spawning channels to assess phenotypic and genotypic correlates of reproductive success in Chinook salmon (Oncorhynchus tshawytscha). Groups of 36 fish in three different sex ratios (1:2, 1:1 and 2:1) were allowed to spawn and the offspring were collected after emergence from the gravel. Microsatellite genetic markers were used to assign parentage of each offspring, and the parents were also typed at the major histocompatibility class IIB locus (MHC). We found that large males, and males with brighter coloration and a more green/blue hue on their lateral integument sired more offspring, albeit only body size and brightness had independent effects. There was no similar relationship between these variables and female reproductive success. Furthermore, there was no effect of sex ratio on the strength or significance of any of the correlations. Females mated non-randomly at the MHC, appearing to select mates that produced offspring with greater genetic diversity as measured by amino-acid divergence. Females mated randomly with respect to male genetic relatedness and males mated randomly with respect to both MHC and genetic relatedness. These results indicate that sexual selection favours increased body size and perhaps integument coloration in males as well as increases genetic diversity at the MHC by female mate choice.  相似文献   

2.
The Yucatán Peninsula in Mexico contains some of the largest breeding groups of the globally distributed and critically endangered hawksbill turtle (Eretmochelys imbricata). An improved understanding of the breeding system of this species and how its genetic variation is structured among nesting areas is required before the threats to its survival can be properly evaluated. Here, we genotype 1195 hatchlings and 41 nesting females at 12 microsatellite loci to assess levels of multiple paternity, genetic variation and whether individual levels of homozygosity are associated with reproductive success. Of the 50 clutches analyzed, only 6% have multiple paternity. The distribution of pairwise relatedness among nesting localities (rookeries) was not random with elevated within‐rookery relatedness, and declining relatedness with geographic distance indicating some natal philopatry. Although there was no strong evidence that particular rookeries had lost allelic variation via drift, younger turtles had significantly lower levels of genetic variation than older turtles, suggesting some loss of genetic variation. At present there is no indication that levels of genetic variation are associated with measures of reproductive success such as clutch size, hatching success, and frequency of infertile eggs.  相似文献   

3.
Mating system and reproductive skew in the black rhinoceros   总被引:5,自引:0,他引:5  
Only approximately 2600 black rhinoceros survive today, mainly in small, isolated populations of < 100 animals. The management of remaining black rhinoceros populations aims at preserving natural levels of genetic relatedness and optimizing breeding success, which requires an accurate knowledge of the mating system, reproductive skew and effective population size. DNA was extracted from faecal samples from a community of 35 wild black rhinoceros, and microsatellites were used to characterize patterns of paternity of 19 offspring born from eight females in this community. Paternity could be ascribed unequivocally for each offspring. Although our conclusions must be considered tentative, we present the first genetic evidence that black rhinoceros males are polygynous, with a high variance in reproductive success. We also describe a noninvasive management tool that can be used for the genetic management of this critically endangered species, both in the wild and in captivity.  相似文献   

4.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

5.
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. ‘Good‐genes‐for‐viability’ models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance‐tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent–offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection.  相似文献   

6.
Multiple mating in female animals is something of a paradox because it can either be risky (e.g., higher probability of disease transmission, social costs) or provide substantial fitness benefits (e.g., genetic bet hedging whereby the likelihood of reproductive failure is lowered). The genetic relatedness of parental units, particularly in lizards, has rarely been studied in the wild. Here, we examined levels of multiple paternity in Australia's largest agamid lizard, the eastern water dragon (Intellagama lesueurii), and determined whether male reproductive success is best explained by its heterozygosity coefficient or the extent to which it is related to the mother. Female polyandry was the norm: 2/22 clutches (9.2%) were sired by three or more fathers, 17/22 (77.2%) were sired by two fathers, and only 3/22 (13.6%) clutches were sired by one father. Moreover, we reconstructed the paternal genotypes for 18 known mother–offspring clutches and found no evidence that females were favoring less related males or that less related males had higher fitness. However, males with greater heterozygosity sired more offspring. While the postcopulatory mechanisms underlying this pattern are not understood, female water dragons likely represent another example of reproduction through cryptic means (sperm selection/sperm competition) in a lizard, and through which they may ameliorate the effects of male‐driven precopulatory sexual selection.  相似文献   

7.
Pitcher TE  Rodd FH  Rowe L 《Genetica》2008,134(1):137-146
Several studies suggest that females may offset the costs of genetic incompatibility by exercising pre-copulatory or post-copulatory mate choice to bias paternity toward more compatible males. One source of genetic incompatibility is the degree of relatedness among mates; unrelated males are expected to be genetically more compatible with a female than her relatives. To address this idea, we investigated the potential for inbreeding depression and paternity biasing mechanisms (pre- and post-copulatory) of inbreeding avoidance in the guppy, Poecilia reticulata. Inbreeding resulted in a reduction in offspring number and quality. Females mated to siblings gave birth to significantly fewer offspring compared to females mated to non-siblings and inbred male offspring took longer to reach sexual maturity. There was no evidence of inbreeding avoidance in pre-copulatory behaviors of females or males. Sexual responsiveness of females to courting males and the number of sexual behaviors males directed at females did not decrease as a function of the relatedness of the two individuals. We also tested whether female guppies can use post-copulatory mechanisms to bias sperm usage toward unrelated males by comparing the number of offspring produced by females mated to two of their siblings (SS), two males unrelated to the female (NN), or to one unrelated male and a sibling male (NS). We found that NS females produced a number of offspring not significantly different than what would be expected if fertilization success were halfway between completely outbreeding (NN) and completely inbreeding (SS) females. This suggests that there is no significant improvement in the number of offspring produced by females mating to both related and unrelated males, relative to that which would be expected if sperm from both males were used equally. Our results suggest that female guppies do not discriminate against closely related males or their sperm.  相似文献   

8.
Behavioural and trapping studies of the social organization of coypus have suggested the occurrence of kin groups and a polygynous mating system. We used 16 microsatellite markers to analyse parentage and relatedness relationships in two populations (Jáuregui and Villa Ruiz) in the Argentinean Pampas. At Jáuregui, a dominant male monopolized most paternities, leading to a high variance in reproductive success between males and a high level of polygyny. At Villa Ruiz, variance in reproductive success was low among resident males and males were the fathers of zero to four offspring each. For females, no significant differences were found. Two different social groups in each study site were used to assess genetic relatedness within and between groups. These groups were neighbouring at Jáuregui but not at Villa Ruiz. At Villa Ruiz, coypus were significantly more related within than between groups, suggesting that behavioural groups were also genetic ones, and adult females were more related within than between groups, as should be expected for kin groups. This relationship was not found at Jáuregui. Our results provide support to previous studies based on behavioural and trapping data, which indicate that coypus form social groups and have a polygynous mating system. However, we found differences in social organization between the two populations. This is the first study to determine parentage and/or relatedness in coypus.  相似文献   

9.
Parental care is expected to increase the likelihood of offspring survival at the cost of investment in future reproductive success. However, alternative parental behaviours, such as filial cannibalism, can decrease current reproductive success and consequently individual fitness. We evaluate the role of among-offspring relatedness on the evolution of parental care and filial cannibalism. Building on our previous work, we show how the evolution of care is influenced by the effect of among-offspring relatedness on both the strength of competition and filial cannibalism. When there is a positive relationship between among-offspring competition and relatedness, parental care will be favoured when among-offspring relatedness is relatively low, and the maintenance of both care and no-care strategies is expected. If the relationship between among-offspring competition and relatedness is negative, parental care is most strongly favoured when broods contain highly related offspring. Further, we highlight the range of conditions over which the level of this among-offspring relatedness can affect the co-occurrence of different care/no care and cannibalism/no cannibalism strategies. Coexistence of multiple strategies is independent of the effects of among-offspring relatedness on cannibalism but more likely when among-offspring relatedness and competition are positively associated.  相似文献   

10.
In the first molecular study of a member of the threatened avian family, Mesitornithidae, we used nine polymorphic microsatellite loci to elucidate parentage, patterns of within-group kinship and occurrence of extra-group paternity in the subdesert mesite Monias benschi, of southwest Madagascar. We found this cooperatively breeding species to have a very fluid mating system. There was evidence of genetic monogamy and polygynandry: of the nine groups with multiple offspring, six contained one breeding pair with unrelated helpers and three contained multiple male and female breeders with related helpers. Although patterns of within-group kinship varied, there was a strong positive relationship between group size and relatedness, suggesting that groups form by natal philopatry. There was also a strong positive correlation between within-sex and between-sex relatedness, indicating that unlike most cooperatively breeding birds, philopatry involved both sexes. In contrast to predictions of kin selection and reproductive skew models, all monogamous groups contained unrelated individuals, while two of the three polygynandrous groups were families. Moreover, although between-group variation in seasonal reproductive success was related to within-group female relatedness, relatedness among males and between the sexes had no bearing on a group's reproductive output. While kin selection may underlie helping behaviour in females, factors such as direct long-term fitness benefits of group living probably determine helping in males. Of the 14 offspring produced by fully sampled groups, at least two were sired by males from neighbouring groups: one by a breeding male and one by a nonbreeding male, suggesting that males may augment their reproductive success through extra-group paternity.  相似文献   

11.
Understanding how variation in reproductive success is related to demography is a critical component in understanding the life history of an organism. Parentage analysis using molecular markers can be used to estimate the reproductive success of different groups of individuals in natural populations. Previous models have been developed for cases where offspring are random samples from the population but these models do not account for the presence of full- and half-sibs commonly found in large clutches of many organisms. Here we develop a model for comparing reproductive success among different groups of individuals that explicitly incorporates within-nest relatedness. Inference for the parameters of the model is done in a Bayesian framework, where we sample from the joint posterior of parental assignments and fertility parameters. We use computer simulations to determine how well our model recovers known parameters and investigate how various data collection scenarios (varying the number of nests or the number of offspring) affect the estimates. We then apply our model to compare reproductive success among different age groups of mottled sculpin, Cottus bairdi, from a natural population. We demonstrate that older adults are more likely to contribute to a nest and that females in the older age groups contribute more eggs to a nest than younger individuals.  相似文献   

12.
When several individuals simultaneously provide for offspring, as in families, the effort of any one individual will depend on the efforts of the other family members. This conflict of interest among family members is made more complicated by their relatedness because relatives share genetic interest to some degree. The conflict resolution will also be influenced by the differences in reproductive value between breeders and helpers. Here, we calculate evolutionarily stable provisioning efforts in families with up to two helpers. We explicitly consider that the behavioral choices are made in a life-history context, and we also consider how group sizes change dynamically; this affects, for example, average relatedness among group members. We assume two different scenarios: intact families in which the breeder is 100% monogamous and stepfamilies in which the breeder shifts mate between breeding events. The average relatedness among family members is allowed to evolve in concert with changes in provisioning effort. Our model shows that an individual's provisioning effort is not easy to predict from either its relatedness to the offspring or its reproductive value. Instead, it is necessary to consider the inclusive fitness effect of provisioning, which is determined by a combination of relatedness, reproductive value, and the reproductive value of the offspring.  相似文献   

13.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

14.
Considerable variation exists in rates of extra-pair paternity between species, and across and within populations of the same species. Explanations for this variation include ecological (e.g. breeding synchrony), morphological (e.g. ornamentation), and genetic (e.g. relatedness) factors, but it is rare for studies to simultaneously explore these factors within a single population. This is especially true for highly ornamented species, where mate choice based on ornamentation may be more complex than in less-adorned species. We conducted such a study in a migratory population of the highly ornamented golden whistler (Pachycephala pectoralis). We quantified male genetic reproductive success and related it to a range of factors putatively involved in determining extra-pair mating success. We found no effects of genetic factors (male heterozygosity and relatedness) on extra-pair success, nor of territory size, male age, or incubation effort. Instead, males possessing yellower breast plumage and large song repertoires enjoyed higher reproductive success. Additionally, we found a negative relationship between local breeding synchrony and male extra-pair mating success. This may be a consequence of mate guarding during the female fertile period and an inability of males to simultaneously mate-guard and pursue extra-pair fertilisations. In this species, the opportunity for extra-pair matings appears to vary temporally with an ecological variable (local breeding synchrony), while fine-scale, inter-male differences in mating success may be influenced by individual attributes (male ornamentation). The migratory nature of the study population and its lack of natal philopatry may mean that relatedness and inbreeding avoidance are less important considerations in mate choice.  相似文献   

15.
There has been recent interest in the role genetic incompatibility may play in mate or sperm choice. One source of incompatibility may be too similar or disparate genomes. An isolated population of the ornate dragon lizard, Ctenophorus ornatus, was followed over a breeding season and parentage assigned to the offspring using microsatellites. It was found that the adults in the population had an eight per cent chance of mating with a relative. I examined whether C. ornatus mate (or fertilize their eggs) with respect to genetic similarity. There was no difference in a female's relatedness to the male in whose territory she resided and her average relatedness to all other males. Neither was there a difference in the relatedness of the male that sired a female's offspring and the female's average relatedness to all other males. There was no evidence of a cost to mating with a more genetically similar mate, because offspring survival was not influenced by degree of inbreeding or outbreeding. However, females that were more outbred had fewer offspring survive. In this small population there are two possible explanations for the decreased fitness associated with outbreeding. First, the species may have an evolutionary history of inbreeding and thus may be susceptible to outbreeding depression. Second. as fitter individuals produce more offspring, these offspring have an increased probability of breeding with relatives, leading to an indirect relationship between fitness and outbreeding.  相似文献   

16.
We investigated reproduction in a semi‐free‐ranging population of a polygynous primate, the mandrill, in relation to genetic relatedness and male genetic characteristics, using neutral microsatellite and major histocompatibility complex (MHC) genotyping. We compared genetic dissimilarity to the mother and genetic characteristics of the sire with all other potential sires present at the conception of each offspring (193 offspring for microsatellite genetics, 180 for MHC). The probability that a given male sired increased as pedigree relatedness with the mother decreased, and overall genetic dissimilarity and MHC dissimilarity with the mother increased. Reproductive success also increased with male microsatellite heterozygosity and MHC diversity. These effects were apparent despite the strong influence of dominance rank on male reproductive success. The closed nature of our study population is comparable to human populations for which MHC‐associated mate choice has been reported, suggesting that such mate choice may be especially important in relatively isolated populations with little migration to introduce genetic variation.  相似文献   

17.
Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen‐binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types.  相似文献   

18.
Sexual selection has traditionally been investigated assuming that male quality is as skewed as patterns of male reproductive success can sometimes be. Recently, female choice has been investigated under the model of genetic compatibility, which assumes that each individual female has her own 'best' mate and there is no overall optimal choice for all females. We investigated female mate choice in the newt species Triturus alpestris, a member of a genus where female choice has been investigated only within the context of the optimal male (female choice for condition-dependent traits). We provided females with two males that differed in one condition-dependent trait (body size) and overall genetic composition. Both male body size and female body size did not influence paternity, but the degree of genetic relatedness between females and potential mates did. Two components of fitness (fecundity and hatching success) did not differ between singly and multiply sired clutches, indicating that females do not employ polyandry as a means of increasing offspring fitness through genetic bet-hedging. Instead, we hypothesize that females may mate initially for fertility assurance, but prefer less-related males as the most genetically compatible mates.  相似文献   

19.
In the primitively eusocial wasp, Ropalidia marginata, low levels of intra-colony genetic relatedness, lack of intra-colony kin discrimination and acceptance of young wasps into alien colonies, prompted us to investigate whether or not there exists a cost of such high genetic variability. Freshly eclosed wasps were paired either with their nestmates or with their non nestmates and their performance in nest building and brood care were compared. There was no demonstrable difference between nestmate and non nestmate pairs in terms of success in raising adult offspring, time required for nest initiation, brood developmental period and productivity. There was also no difference in the efficiency of cooperation and division of labour between the nestmate pairs and non nestmate pairs. These results reinforce the idea that the haplodiploidy hypothesis is insufficient to explain the prevalence of worker behaviour in R. marginata and emphasize the importance of factors other than genetic relatedness in the evolution of eusociality. Received: 27 April 1998 / Accepted: 10 July 1998  相似文献   

20.
Individuals are generally predicted to avoid inbreeding because of detrimental fitness effects. However, several recent studies have shown that limited inbreeding is tolerated by some vertebrate species. Here, we examine the costs and benefits of inbreeding in a largely polygynous rodent, the yellow-bellied marmot (Marmota flaviventris). We use a pedigree constructed from 8 years of genetic data to determine the relatedness of all marmots in our study population and examine offspring survival, annual male reproductive success, relatedness between breeding pairs and the effects of group composition on likelihood of male reproduction to assess inbreeding in this species. We found decreased survival in inbred offspring, but equal net reproductive success among males that inbred and those that avoided it. Relatedness between breeding pairs was greater than that expected by chance, indicating that marmots do not appear to avoid breeding with relatives. Further, male marmots do not avoid inbreeding: males mate with equal frequency in groups composed of both related and unrelated females and in groups composed of only female relatives. Our results demonstrate that inbreeding can be tolerated in a polygynous species if the reproductive costs of inbreeding are low and individuals that mate indiscriminately do not suffer decreased reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号