首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

2.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

3.
Characteristics of photosynthesis and respiration of bladelets were compared between Ecklonia cava Kjellman sporophytes growing in a warmer temperate locality (Tei, Kochi Pref., southern Japan) and in a cooler temperate locality (Nabeta, Shizuoka Pref., central Japan). Photosynthesis and respiration were measured with a differential gas-volumeter (Productmeter). In photosynthesis-light curves at 20°C, the rate of net photosynthesis was almost the same at light intensities lower than 25 μmol m−2 s−1 and the light-saturation occurred at 200–400 μmol m−2s−1 in plants of both localities. The light-saturated net photosynthetic rates were higher in winter and spring than in summer and autumn in both plants. The optimum temperature for net photosynthesis at 400 μmol m−2s−1 was 27°C throughout the year in the Tei plant and 25–27°C in the Nabeta plant. The decrease of net photosynthetic rates in the supraoptimal temperature range up to 29°C was sharper in winter and spring than in summer and autumn in both plants, being smaller in the Tei plant than in the Nabeta plant in all seasons. The dark respiration rate always increased with water temperature rise in both plants. No clear differences were found in the dark respiration rate between Tei and Nabeta plants except that when measured against dry weight, the Tei plant showed a slightly lower rate as compared with the Nabeta plant.  相似文献   

4.

The kelp Lessonia corrugata (Ochrophyta, Laminariales) is being developed for integrated multi-trophic aquaculture (IMTA) trials in the vicinity of salmon cages in Tasmania, Australia. Gametophytes are vegetally maintained before seeding on hatchery twine; however, the optimal temperature and light conditions for growth and sexual development are unknown. We measured vegetative size of female and male gametophytes and sexual development of females over a range of temperatures and irradiances using a temperature gradient table and neutral density light filters. Over a 4-week experiment, gametophytes were exposed to a combination of thermal (5.7–24.9 °C) and irradiance (10–100 μmol photons m?2 s?1) gradients, to assess biological performance. At the temperature extremes (hottest = 24.9 °C, coldest = 5.7 °C), we observed the critical thermal limits for this species and the results reveal a narrow optimal temperature range for growth and sexual development between 15.7 and 17.9 °C, with irradiances between 40 and 100 μmol photons m?2 s?1 resulting in fertile female gametophytes. Lessonia corrugata inhabits a small geographic range, found only around Tasmania, south of the Australian mainland, hence oceanic changes such as ongoing increases in sea surface temperatures (SSTs), and altered irradiance regimes may limit recruitment of the early microscopic life stages in the future. Our findings provide optimised culture conditions for aquaculture and information to predict the future geographic range of L. corrugata under ocean global change.

  相似文献   

5.
Responses of photosynthetic rates, determined by oxygen evolution using the light and dark bottles technique, to different temperatures, irradiances, pH, and diurnal rhythm were analyzed under laboratory conditions in four charophyte species (Chara braunii Gmelin, C. guairensis R. Bicudo, Nitella subglomerata A. Braun and Nitella sp.) from lotic habitats in southeastern Brazil. Parameters derived from the photosynthesis versus irradiance curves indicated affinity to low irradiances for all algae tested. Some degree of photoinhibition, [β= ‐(0.30–0.13) mg O2 g?1 dry weight Ir1 (μmol photons m?2 s?1)?1], low light compensation points (Ic= 4–20 μmol photons m?2 s?1) were found for all species analyzed, as well as low values of light saturation parameter (Ik) and saturation (Is) 29–130 and 92–169 μmol photons m?2 s?1, respectively. Photoacclimation was observed in two populations of N. subglomerata collected from sites with different irradiances, consisting of variations in photosynthetic parameters (higher values of a, and lower of Ik and maximum photosynthetic rate, Pmax, in the population under lower irradiance). The highest photosynthetic rates for Chara species were observed at 10–15°C, while for Nitella the highest photosynthetic rate was observed at 20–25°C, despite the lack of significant differences among most levels tested. Rates of dark respiration significantly increase with temperature, with the highest values at 25°C. The results from pH experiments showed highest photosynthetic rates under pH 4.0 for all algae, suggesting higher affinity for inorganic carbon in the form of carbon dioxide, except in one population of N. subglomerata, with similar rates under the three levels, suggesting indistinct use of bicarbonate and carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for most algae tested, which was characterized by two peaks: the first (higher) during the morning (07.00–11.00) and the second (lower) in the afternoon (14.00–17.00). This suggests an endogenous rhythm determining the daily variations in photosynthetic rates.  相似文献   

6.
Phenology, irradiance and temperature characteristics of a freshwater benthic red alga, Nemalionopsis tortuosa Yoneda et Yagi (Thoreales), were examined from Kagoshima Prefecture, southern Japan for the conservation of this endemic and endangered species. Field surveys confirmed that algae occurred in shaded habitats from winter to early summer, and disappeared during August through November. A net photosynthesis–irradiance (PE) model revealed that net photosynthetic rate quickly increased and saturated at low irradiances, where the saturating irradiance (Ek) and compensation irradiance (Ec) were 10 (8–12, 95% credible interval (CRI)) and 8 (6–10, 95% CRI) μmol photon m?2 s?1, respectively. Gross photosynthesis and dark respiration was determined over a range of temperatures (8–36°C) by dissolved oxygen measurements, and revealed that the maximum gross photosynthetic rate was highest at 29.5 (27.4–32.0, 95%CRI) °C. Dark respiration also increased linearly when temperature increased from 8°C to 36°C, indicating that the increase in dark respiration at higher temperature most likely caused decreases in net photosynthesis. The maximum quantum yield (Fv/Fm) that was determined using a pulse amplitude modulated‐chlorophyll fluorometer (Imaging‐PAM) was estimated to be 0.51 (0.50–0.52, 95%CRI) and occurred at an optimal temperature of 21.7 (20.1–23.4, 95%CRI) °C. This species can be considered well‐adapted to the relatively low natural irradiance and temperature conditions of the shaded habitat examined in this study. Our findings can be applied to aid in the creation of a nature‐reserve to protect this species.  相似文献   

7.
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 μmol photons m?2 s?1 was lethal to dim‐light (7–10 μmol photons m?2 s?1) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim‐light adapted vegetative gametophytes were shown to be able tolerate as high as 420 μmol photons m?2 s?1 if the irradiance was steadily increased from dim light levels (7–10 μmol photons m?2 s?1) to 90, 180 and finally 420 μmol photons m?2 s?1, respectively, at a minimum of 1–3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site‐specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.  相似文献   

8.
Responses of net photosynthetic rates to temperature, irradiance, pH/inorganic carbon and diurnal rhythm were analyzed in 15 populations of eight freshwater red algal species in culture and natural conditions. Photosynthetic rates were determined by oxygen concentration using the light and dark bottles technique. Parameters derived from the photosynthesis–irradiance curves indicated adaptation to low irradiance for all freshwater red algae tested, confirming that they tend to occur under low light regimes. Some degree of photo‐inhibition (β= ‐0.33–0.01 mg O2 g?1 DW h?1 (μmol photons m?2 s?1)?1) was found for all species/populations analyzed, whereas light compensation points (Ic) were very low (≤ 2 μmol photons m‐ photons s?1) for most algae tested. Saturation points were low for all algae tested (Ik = 6–54 μmol photons m?2 s?1; Is = 20–170 umol photons m?2 s?1). Rates of net photosynthesis and dark respiration responded to the variation in temperature. Optimum temperature values for net photosynthesis were variable among species and populations so that best performances were observed under distinct temperature conditions (10, 15, 20 or 25°C). Rates of dark respiration exhibited an increasing trend with temperature, with highest values under 20–25°C. Results from pH experiments showed best photosynthetic performances under pH 8.5 or 6.5 for all but one species, indicating higher affinity for inorganic carbon as bicarbonate or indistinct use of bicarbonate and free carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for all algae tested, which was characterized by two relatively clear peaks, with some variations around it: a first (higher) during the morning (07.00–11.00 hours.) and a second (lower) in the afternoon (14.00–18.00 hours). Comparative data between the ‘Chantransia’ stage and the respective gametophyte for one Batrachospermum population revealed higher values (ca 2‐times) in the latter, much lower than previously reported. The physiological role of the ‘Chantransia’ stage needs to be better analyzed.  相似文献   

9.
Ulothrix zonata (Weber and Mohr) Kütz. is an unbranched filamentous green alga found in rocky littoral areas of many northern lakes. Field observations of its seasonal and spatial distribution indicated that it should have a low temperature and a high irradiance optimum for net photosynthesis, and at temperatures above 10°C it should show an increasingly unfavorable energy balance. Measurements of net photosynthesis and respiration were made at 56 combinations of light and temperature. Optimum conditions were 5°C and 1100 μE·m?2·s?1 at which net photosynthesis was 16.8 mg O2·g?1·h?1. As temperature increased above 5° C optimum irradiance decreased to 125 μE·m?2·s?1 at 30°C. Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiance exposures of 125 μE·m?2·s?1 or greater. Polynomials were fitted to the data to generate response surfaces. Polynomial equations represent statistical models which can accurately predict photosynthesis and respiration for inclusion in ecosystem models.  相似文献   

10.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

11.
Understanding of the physiological responses of kelp to environmental parameters is crucial, especially in the context of environmental change that may have contributed to the decline of kelp forests all over the world. The current study presents the photosynthetic characteristics of the macroscopic sporophyte and microscopic gametophyte stages of the brown alga Alaria crassifolia from Hokkaido, Japan, as determined by examining their photosynthetic responses over a range of temperature and irradiance using dissolved oxygen and chlorophyll fluorescence measurements. Net photosynthetic rates of the sporophyte were consistently higher than those of gametophyte across temperature gradients and irradiance levels. Photosynthesis–irradiance curves at 8°C, 16°C, and 20°C revealed similar initial slopes (α = 0.4–0.9) on the two life history stages, but higher compensation (E c = 4–7 μmol photons m?2 s?1) and saturation irradiances (E k = 53–103 μmol photons m?2 s?1) for the sporophyte than for the gametophyte (E c = 0–7 μmol photons m?2 s?1; E k = 7–10 μmol photons m?2 s?1). Both stages exhibited chronic photoinhibition, as shown by the failure of recovery in their maximum quantum yields (F v/F m) following high irradiance stress, with greater possibility of photodamage at low temperature. Gametophytes were less sensitive to low temperatures than sporophytes, given their relatively stable F v/F m response. Nevertheless, temperature optima for photosynthesis of both stages coincide with each other at 20–23°C, which correspond to the growth and maturation periods of A. crassifolia in Japan. This species is also likely to suffer from thermal inhibition as both GP rates and F v/F m decreased above 24°C.  相似文献   

12.
The growth characteristics of Haematococcus pluvialis Flotow were determined in batch culture. Optimal temperature for growth of the alga was between 25° and 28°C, at which the specific growth rate was 0.054 h?1. At higher temperatures, no cell division was observed, and cell diameter increased from 5 to 25 μm. The saturated irradiance for growth of the alga was 90 μmol quanta · m?2·s?1; under higher irradiances (e.g. 400 μmol quanta·m?2·s?1) astaxanthin accumulation was induced. Growth rate, cell cycle, and astaxanthin accumulation were significantly affected by growth conditions. Careful attention should be given to the use of optimal growth conditions when studying these processes.  相似文献   

13.
Recent investigations have shown the temperate scleractinian coral Cladocora caespitosa to be a new potential climate archive for the Mediterranean Sea. Whilst earlier studies have demonstrated a seasonal variation in growth rates, they were unable to distinguish which environmental parameter (light, temperature, or food) was influencing growth. In this study, the effect of these three factors on the coral physiology and calcification rate was characterized to aid the correct interpretation of skeletal trace element variations. Two temperatures (13 and 23°C), irradiances (50 and 120 μmol m−2 s−1), and feeding regimes (unfed and fed with nauplii of Artemia salina) were tested under controlled laboratory conditions on the growth, zooxanthellae density, chlorophyll (chl) content, and asexual reproduction (budding) of C. caespitosa during a 7-week factorial experiment. Unlike irradiance, which had no effect, high temperature and food supply increased the growth rates of C. caespitosa. The effect of feeding was however higher for corals maintained at low temperature, suggesting that heterotrophy is especially important during the cold season, and that temperature is the predominant factor affecting the coral’s growth. At low temperature, fed samples had higher zooxanthellae density and chl content, possibly for maximizing photosynthetic efficiency. Sexual reproduction investment of C. caespitosa was higher during favourable conditions characterised by high temperatures and zooplankton availability.  相似文献   

14.
The cryptophyte Rhodomonas salina is widely used as feed for copepod cultures. However, culturing conditions to obtain high-quality algae have not yet been efficiently optimized. Therefore, we aimed to develop a cultivation protocol for R. salina to optimize its nutritional value and provide technical recommendations for later large-scale production in algal photobioreactors. We studied photosynthesis, growth, pigments, fatty acid (FA) and free amino acid (FAA) composition of R. salina cultured at different irradiances (10–300 μmol photons m?2 s?1) and nutrient availability (deficiency and excess). The optimal range of irradiance for photosynthesis and growth was 60–100 μmol photons m?2 s?1. The content of chlorophylls a and c decreased with increasing irradiance while phycoerythrin peaked at irradiances of 40–100 μmol photons m?2 s?1. The total FA content was maximal at optimal irradiances for growth, especially under nutrient deficiency. However, highly unsaturated fatty acids, desired components for copepods, were higher under nutrient excess. The total FAA content was highest at limiting irradiances (10–40 μmol photons m?2 s?1) but a better composition with a higher fraction of essential amino acids was obtained at saturated irradiances (60–140 μmol photons m?2 s?1). These results demonstrate that quality and quantity of FA and FAA of R. salina can be optimized by manipulating the irradiance and nutrient conditions. We suggest that R. salina should be cultivated in a range of irradiance 60–100 μmol photons m?2 s?1 and nutrient excess to obtain algae with high production and a balanced biochemical composition as feed for copepods.  相似文献   

15.
The macroalga Ulva ohnoi constitutes a considerable fraction of green tides in coastal areas of Japan, but little is known about the physiological characteristics of this species. To investigate the environmental factors that promote the formation of green tides, we tested the responses of U. ohnoi and another common Japanese species, Ulva pertusa, to various levels of irradiance at different water temperatures. Because the two species are morphologically similar, we identified them using the PCR‐restriction fragment length polymorphism method. Under laboratory conditions, we evaluated the photosynthetic, dark respiration, and relative growth rate at a range of water temperatures (5 to 35°C) and photosynthetically active radiation (0 to 1000 μmol photons m?2 s?1). The maximum gross photosynthetic rate of U. ohnoi was larger than that of U. pertusa. The dark respiration rates revealed no significant differences among the species and temperature conditions. At 500 μmol photons m?2 s?1, the relative growth rate of U. ohnoi was larger than that of U. pertusa in higher temperature and the difference was the largest at 20°C. The estimated compensation irradiance and estimated saturation irradiance of U. ohnoi and U. pertusa ranged from 0.709 to 5.510 and 40.530 to 58.674 μmol photons m?2 s?1, which were lower than those in other intertidal green macroalgae, from 6 to 11 and 50 to 82 μmol photons m?2 s?1, respectively. Thus, U. ohnoi which exists as free‐floating near the water surface and accumulating inside the green tide can survive extensively in the water column of the intertidal zone, furthermore, the species can maintain rapid growth in this situation. Therefore, as a result of this study, it is suggested that the ecological success of U. ohnoi in shallow waters such as the tidal flats, estuarine, and coasts of the inner bay in comparison with U. pertusa.  相似文献   

16.
Given their rapid growth and nutrient assimilation rates, Porphyra spp. are good candidates for bioremediation. The production potential of two northeast U.S. Porphyra species currently in culture (P. purpurea and P. umbilicalis) was evaluated by measuring rates of photosynthesis (as O2 evolution) of samples grown at 20° C. Gametophytes of P. umbilicalis photosynthesized at rates that were 80% higher than those of P. purpurea over 5–20° C at both sub‐saturating and saturating irradiances (37 and 289 μmol photons m?2 s?1). Porphyra umbilicalis was both more efficient at low irradiances (higher alpha) and had a higher Pmax than did P. purpurea (23.0 vs. 15.6 μmol O2 g?1 DW min?1), suggesting that P. umbilicalis is a better choice for mass culture where self‐shading may be severe. The photosynthesis‐irradiance relationship for the Conchocelis stage of P. purpurea was also examined. Tufts of filaments, grown at 10, 15, and 20° C, were assayed at growth temperatures at irradiances ranging from 0–315 μmol photons m?2 s?1. Tufts were slightly more productive at 15° than at 10° C, but only ca. 4–6% as productive as gametophytes. Maximum rates of net photosynthesis were reduced by 66–74% in tufts grown at 20° C (only about 2% of gametophytes). The Conchocelis stage, however, need not limit mariculture operations; once Conchocelis cultures are established, they can be maintained over the long‐term as ready sources of spores for net seeding.  相似文献   

17.
Knowledge concerning the effects of several abiotic factors on the physiology of carrageenophytes is essential both in ecological and economic standpoints, to ensure their sufficient supply for the sustainability of seaweed‐based industries. This paper presents the photosynthetic characteristics of farmed carrageenophytes, E ucheuma denticulatum and K appaphycus alvarezii [brown (BRN) and green (GRN) color morphotypes] from Sulawesi Utara (Sulawesi Island), Indonesia, as determined by examining their photosynthetic response across different temperatures and irradiances using dissolved oxygen measurements and pulse‐amplitude modulated fluorometer. Net photosynthesis–irradiance ( P E ) curves at 26°C revealed that net photosynthetic rates of the three seaweeds gradually increased until the estimated saturation irradiances ( E k ) of 58 μmol photons m? 2 s?1 (49–68 μmol photons m? 2 s?1, 95% Bayesian prediction intervals; BPI) for E . denticulatum, and 158 and 143 μmol photons m? 2 s?1 (134–185 and 99–203 μmol photons m? 2 s?1, 95% BPI) for BRN and GRN K . alvarezii, respectively; and that no photoinhibition was observed at the highest irradiance of 1000 μmol photons m? 2 s?1. All seaweed samples exhibited photosynthetic tolerance to high PAR as shown by their recovery in maximum quantum yields (Fv / Fm ) following chronic exposures; as well as tolerance over a broad range of temperature, which is from 19 to 33°C for E . denticulatum, 20–29°C for BRN K . alvarezii, and 17–32°C for GRN K . alvarezii. Temperature responses of these carrageenophytes indicated that they were well‐adapted to the annual seawater temperatures in the cultivation site; however, they are also likely close to threshold levels for thermal inhibition, given the decline in Fv / Fm above 30°C.  相似文献   

18.
The present study describes a strain of Gloeocapsa sp. designated as Gacheva 2007/R‐06/1, originally isolated from a geothermal flow located in Rupite, Bulgaria. To evaluate whether this cyanobacterium is locally adapted to hot environment or has the ability to tolerate lower temperatures, its growth, biochemical composition, enzyme isoforms and activity of the main antioxidant enzymes and proteases were characterized under various temperatures and two irradiance levels. The strain was able to grow over the whole temperature range (15–40°C) under two different photon fluence densities – 132 μmol photons m?2 s?1 (unilateral, low light, LL) and 2 × 132 μmol photons m?2 s?1 (bilateral, high light, HL). The best growth occurred at either 34°C and LL or at 36°C and HL, but significant growth inhibition was noted at 15°C and 40°C. Low temperature treatment (15°C) resulted in higher levels of total protein and an increased activity of manganese superoxide dismutase (MnSOD) and glutathione reductase, as compared to optimum growth temperatures. After simultaneous exposure to 15°C and HL, increases in lipid content and activity of iron superoxide dismutase and catalase (CAT) were also observed. Cultivation of cells at 40°C enhanced MnSOD, CAT and peroxidase activities, regardless of irradiance level. Increased total protein content and protease activity at 40°C was only associated with the HL treatment. Overall, these results indicate that Gloeocapsa sp. strain Gacheva 2007/R‐06/1 used different strategies to enable cells to efficiently acclimate and withstand adverse low or high temperatures. This strain obviously tolerates a wide range of temperatures below its natural habitat temperature, and does not seem to be locally adapted to its original thermal regime. It behaved as a thermotolerant rather than a thermophilic cyanobacterium, which suggests its wider distribution in nature.  相似文献   

19.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

20.
In integrated multi-trophic aquaculture (IMTA), seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents in coastal ecosystems. To establish such bioremediation systems, selection of suitable seaweed species is important. The distribution and productivity of seaweeds vary seasonally based on water temperature and photoperiod. In Korea, candidate genera such as Pophyra, Laminaria, and Undaria grow from autumn to spring. In contrast, Codium grows well at relatively high water temperatures in summer. Thus, aquaculture systems potentially could capitalize on Codium’s capacity for rapid growth in the warm temperatures of late summer and early fall. In this study, we investigated ammonium uptake and removal efficiency by Codium fragile. In laboratory experiments, we grew C. fragile under various water temperatures (10, 15, 20, and 25°C), irradiances (dark, 10, and 100 μmol photons m−2 s−1), and initial ammonium concentrations (150 and 300 μM); in all cases, C. fragile exhausted the ammonium supply for 6 h. At 150 μM of , ammonium removal efficiency was greatest (99.5 ± 2.6%) when C. fragile was incubated at 20°C under 100 μmol photons m−2 s−1. At 300 μM of , removal efficiency was greatest (86.3 ± 2.1%) at 25°C under 100 μmol photons m−2 s−1. Ammonium removal efficiency was significantly greater at 20 and 25°C under irradiance of 100 μmol photons m−2 s−1 than under other conditions tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号