首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Using an in vivo rabbit model system, we have studied the morphological and biochemical changes in corneal, conjunctival, and esophageal epithelia during vitamin A deficiency. Light and electron microscopy showed that the three epithelia undergo different degrees of morphological keratinization. Corneal and conjunctival epithelia became heavily keratinized, forming multiple layers of superficial, anucleated cornified cells. In contrast, esophageal epithelium underwent only minor morphological changes. To correlate morphological alterations with the expression of specific keratin molecules, we have analyzed the keratins from these epithelia by the immunoblot technique using the subfamily-specific AE1 and AE3 monoclonal antikeratin antibodies. The results indicate that during vitamin A deficiency, all three epithelia express an AE1-reactive, acidic 56.5-kd keratin and an AE3-reactive, basic 65-67-kd keratin. Furthermore, the expression of these two keratins correlated roughly with the degree of morphological keratinization. AE2 antibody (specific for the 56.5- and 65-67-kd keratins) stained keratinized corneal epithelial sections suprabasally, as in the epidermis, suggesting that these two keratins are expressed mainly during advanced stages of keratinization. These two keratins have previously been suggested to represent markers for epidermal keratinization. Our present data indicate that they can also be expressed by other stratified epithelia during vitamin A deficiency-induced keratinization, and suggest the possibility that they may play a role in the formation of the densely packed tonofilament bundles in cornified cells of keratinized tissues.  相似文献   

2.
Human epidermal keratinocytes express under various growth conditions a total of at least nine keratins that can be divided into two subfamilies. Subfamily A comprises 40-, 46-, 48-, 50-/50'-, and 56.5-kilodalton (kd) keratins which are relatively acidic (pI less than 5.5) and, with the exception of 46-kd keratin, are recognized by AE1 monoclonal antibody. Subfamily B comprises 52-, 56-, 58-, and 65-67-kd keratins which are relatively basic (pI greater than 6) and are recognized by AE3 monoclonal antibody. Within each keratin subfamily, there is a constant member (50-/50'- and 58-kd keratins of the subfamilies A and B, respectively) that is always expressed. The other seven keratins of both subfamilies are variable members whose expression depends upon the cellular differentiated state, which is in turn modulated by the growth environment. The 56.5-kd keratin (subfamily A) and the 65-67-kd keratins (subfamily B) are coordinately expressed during keratinization. In contrast, the 40-, 46-, and 48-kd keratins (subfamily A) and the 52- and 56-kd keratins (subfamily B) are characteristic of cultured epidermal cells forming nonkeratinized colonies. These results demonstrate that human epidermal keratins can be classified according to their reactivity with monoclonal antikeratin antibodies, isoelectric point, and mode of expression. The classification of keratins into various subgroups may have important implications for the mechanisms of epidermal differentiation, the evolution of keratin heterogeneity, and the use of keratin markers for tumor diagnosis.  相似文献   

3.
Three monoclonal antibodies (AE1, AE2, and AE3) were prepared against human epidermal keratins and used to study keratin expression during normal epidermal differentiation. Immunofluorescence staining data suggested that the antibodies were specific for keratin-type intermediate filaments. The reactivity of these antibodies to individual human epidermal keratin polypeptides (65-67, 58, 56, and 50 kdaltons) was determined by the immunoblot technique. AE1 reacted with 56 and 50 kdalton keratins, AE2 with 65-67 and 56-kdalton keratins, and AE3 with 65-67 and 58 kdalton keratins. Thus all major epidermal keratins were recognized by at least one of the monoclonal antibodies. Moreover, common antigenic determinants were present in subsets of epidermal keratins. To correlate the expression of specific keratins with different stages of in vivo epidermal differentiation, the antibodies were used for immunohistochemical staining of frozen skin sections. AE1 reacted with epidermal basal cells, AE2 with cells above the basal layer, and AE3 with the entire epidermis. The observation that AE1 and AE2 antibodies (which recognized a common 56 kdalton keratin) stained mutually exclusive parts of the epidermis suggested that certain keratin antigens must be masked in situ. This was shown to be the case by direct analysis of keratins extracted from serial, horizontal skin sections using the immunoblot technique. The results from these immunohistochemical and biochemical approaches suggested that: (a) the 65- to 67-kdalton keratins were present only in cells above the basal layer, (b) the 58-kdalton keratin was detected throughout the entire epidermis including the basal layer, (c) the 56- kdalton keratin was absent in the basal layer and first appeared probably in the upper spinous layer, and (d) the 50-kdalton keratin was the only other major keratin detected in the basal layer and was normally eliminated during s. corneum formation. The 56 and 65-67- kdalton keratins, which are characteristic of epidermal cells undergoing terminal differentiation, may be regarded as molecular markers for keratinization.  相似文献   

4.
The keratins are a highly heterogeneous group of proteins that form intermediate filaments in a wide variety of epithelial cells. These proteins can be divided into at least seven major classes according to their molecular weight and their immunological reactivity with monoclonal antibodies. Tissue-distribution studies have revealed a correlation between the expression of specific keratin classes and different morphological features of in vivo epithelial differentiation (simple vs. stratified; keratinized vs. nonkeratinized). Specifically, a 50,000- and a 58,000-dalton keratin class were found in all stratified epithelia but not in simple epithelia, and a 56,500- and a 65-67,000-dalton keratin class were found only in keratinized epidermis. To determine whether these keratin classes can serve as markers for identifying epithelial cells in culture, we analyzed cytoskeletal proteins from various cultured human cells by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The 56,500- and 65-67,000-dalton keratins were not expressed in any cultured epithelial cells examined so far, reflecting the fact that none of them underwent morphological keratinization. The 50,000- and 58,000-dalton keratin classes were detected in all cultured cells that originated from stratified squamous epithelia, but not in cells that originated from simple epithelia. Furthermore, human epidermal cells growing as a monolayer in low calcium medium continued to express the 50,000- and 58,000-dalton keratin classes. These findings suggest that the 50,000- and 58,000-dalton keratin classes may be regarded as "permanent" markers for stratified squamous epithelial cells (keratinocytes), and that the expression of these keratin markers does not depend on the process of cellular stratification. The selective expression of the 50,000- and 58,000-dalton keratin classes, which are synthesized in large quantities on a per cell basis, may explain the high keratin content of cultured keratinocytes.  相似文献   

5.
Summary Tracheas from vitamin A-deficient hamsters in organ culture in vitamin A-free medium developed squamous metaplasia. Addition of retinyl acetate to the medium prevented squamous metaplasia and a mucociliary epithelium was maintained. Indirect immunofluorescent staining with antikeratin antibodies AE1 and AE3 indicated positive reactions with epithelium of tracheas either cultured in vitamin A-free or retinyl acetate (RAc)-containing medium. The “stratum corneum”-like squames in metaplastic tracheas were strongly stained by AE3. Immunoprecipitation of cytoskeletal extracts from [35S]methionine labeled tracheas with a multivalent keratin antiserum indicated that the concentration of keratins synthesized in tracheas cultured in vitamin A-free medium was greater than that observed in tracheas cultured in the presence of RAc. In addition, new species of keratin were expressed in tracheas cultured in RAc-free medium. Alterations in the program of keratin synthesis were clearly detectable after 1 d in vitamin A-free medium, even though squamous metaplasia was not yet obvious. Squamous tracheas were shown by immunoblot analysis to contain keratins of 50, 48, 46.5, and 45 kilodalton (kd) detected with AE1; and 58, 56, and 52 kd detected with AE3. Immunoblot analysis with monospecific antimouse keratin sera also demonstrated the presence of 60, 55, and 50 kd keratins in the metaplastic tracheas. All these various species of keratins were either absent or present in much reduced quantity in mucociliary tracheas in RAc-containing medium. Interestingly, the induction of squamous metaplasia in tracheal epithelium did not result in the expression of the 59 and 67 kd keratins which are characteristically expressed in the differentiated layers of the epidermis. Therefore, this study shows that squamous metaplasia of tracheas due to vitamin A-free cultivation is accompanied by an increase in keratin synthesis as well as by the appearance of keratin species not normally present in mucociliary tracheal epithelium.  相似文献   

6.
The epidermal keratinocytes express two major pairs of keratin polypeptides. One pair (K5/K14) expressed specifically in basal generative compartment and the other (K1/K10) expressed specifically in the differentiating suprabasal compartment. The switch in the expression of the keratins from proliferating to differentiating compartment indicates the changes that occur in the keratin filament organization which in turn influences the functional properties of the epidermis. Proper regulation of keratin gene expression and the filament organization are absolutely necessary for normal functioning of the skin. Keratin gene mutations can influence the filament integrity thereby causing several heritable blistering disorders of the skin such as epidermolysis bullosa, bullous icthyosiform erythroderma, etc. Changes in the keratin gene expression may lead to incomplete differentiation of the epidermal keratinocyte, causing hyperproliferative diseases of the skin such as psoriasis, carcinomas, etc. This review briefly describes the changes in keratin structure or gene expression that are known to result in various disorders of the skin.  相似文献   

7.
In contrast to the simplified keratin content of bovine, rabbit, and rat esophageal epithelium (composed mainly of a 57 and 46 or 51 kD keratin, depending on the animal species), human esophageal epithelium contained a quantitatively different array of keratin proteins, ranging in molecular weight from 37 to 61 kD. The pattern of keratin proteins from human esophageal epithelium differed qualitatively and quantitatively from that of human epidermis. Human esophageal epithelium lacked the 63, 65, and 67 kD keratins characteristic of human epidermis, consistent with the absence of a granular layer and an anucleate stratum corneum. Moreover, human esophageal epithelium contained a distinctive 61 kD keratin protein which was either not present or present in only small amounts in human epidermis and variable amounts of a 37 kD keratin. Whereas the 56, 59, and 67 kD keratins were the most abundant keratins in human epidermis, the 52, 57, and 61 kD keratins predominated in human esophageal epithelium. During in vitro cultivation, both human epidermal and esophageal keratinocytes produce colonies which are stratified, but the morphologic appearance of these cultured epithelia differs. Only cultured human epidermal keratinocytes contain keratohyalin granules in the outermost layers and a prominent 67 kD keratin on immunoprecipitation. Otherwise the keratin contents appear similar. In conclusion, human esophageal epithelium exhibited intertissue and interspecies differences in the pattern of keratin proteins. During in vitro cultivation, human esophageal keratinocytes retained some aspects of their distinctive program of differentiation.  相似文献   

8.
9.
Injury to stratified epithelia causes a strong induction of keratins 6 (K6) and 16 (K16) in post-mitotic keratinocytes located at the wound edge. We show that induction of K6 and K16 occurs within 6 h after injury to human epidermis. Their subsequent accumulation in keratinocytes correlates with the profound reorganization of keratin filaments from a pan-cytoplasmic distribution to one in which filaments are aggregated in a juxtanuclear location, opposite to the direction of cell migration. This filament reorganization coincides with additional cytoarchitectural changes and the onset of re-epithelialization after 18 h post-injury. By following the assembly of K6 and K16 in vitro and in cultured cells, we find that relative to K5 and K14, a well- characterized keratin pair that is constitutively expressed in epidermis, K6 and K16 polymerize into short 10-nm filaments that accumulate near the nucleus, a property arising from K16. Forced expression of human K16 in skin keratinocytes of transgenic mice causes a retraction of keratin filaments from the cell periphery, often in a polarized fashion. These results imply that K16 may not have a primary structural function akin to epidermal keratins. Rather, they suggest that in the context of epidermal wound healing, the function of K16 could be to promote a reorganization of the cytoplasmic array of keratin filaments, an event that precedes the onset of keratinocyte migration into the wound site.  相似文献   

10.
Cultured rabbit corneal epithelial cells undergo three distinct stages of growth and differentiation characterized by the sequential appearance of K5/K14 keratin markers for basal keratinocytes, K6/K16 keratin markers for "hyperproliferative" keratinocytes, and K3/K12 keratin markers for corneal-type differentiation. Analyses of [35S]methionine-labeled, newly synthesized keratins revealed that K6/K16 are synthesized only briefly when the cells undergo exponential growth, and their synthesis is suppressed when the cells reach confluence and switch to synthesizing K3/K12. Transient synthesis of K6/K16 was also observed in vivo during corneal epithelial regeneration. Although K6/K16 expression in general correlates well with cellular growth, drug-induced inhibition of corneal epithelial growth and related data on human epidermal keratinocytes indicate that these two events are dissociable. These results establish clearly for the first time a reciprocal relationship, on a protein level, between the synthesis of K6/K16 and a differentiation-related keratin pair, K3/K12. Such a relationship strongly suggests a competitive mechanism controlling the synthesis of these two major classes of keratins in the suprabasal compartment. Our results also indicate that although hyperproliferation is usually accompanied by K6/K16 expression, the reverse is not always true. Taken together, the data suggest that K6/K16 are synthesized, perhaps by default, as an alternative suprabasal keratin pair under conditions that are nonpermissive for keratinocytes to express their normal, differentiation-related keratin pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号