首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cytochrome P-450-mediated redox cycling between the synthetic estrogen diethylstilbestrol (DES) and diethylstilbestrol-4',4"-quinone (DES Q) has previously been demonstrated. Cytochrome P-450 reductase catalyzes the reduction of DES Q presumably via a semiquinone formed by one-electron reduction. A reducing action of NAD(P)H quinone reductase (EC 1.6.99.2) mediating two-electron reduction of DES Q has been investigated in the present work. Quinone reductase catalyzed the conversion in the presence of NADH or NADPH of DES Q to 53-65% Z-DES, a marker product of reduction. Dicumarol (15 microM), a known specific inhibitor of quinone reductase, inhibited this reduction almost completely. Using microsomes from Syrian hamster kidney, a target organ of estrogen-induced carcinogenesis, the reduction of DES Q was only partially inhibited by dicumarol. Apparent Km values of quinone reductase and cytochrome P-450 reductase were 17.25 and 11.9 microM, respectively. These data demonstrate that in hamster kidney, quinone reductase and cytochrome P-450 reductase compete for the reduction of DES Q. Microsomal 02-. radical generation was stimulated 10-fold over base levels by the addition of 100 microM DES Q. The formation of 02-. radicals was inhibited by addition of superoxide dismutase (0.2 mg/ml) or by 2'-AMP or NADP, known inhibitors of cytochrome P-450 reductase. In contrast, dicumarol enhanced microsome-mediated 02-. formation. It is concluded that cytochrome P-450 reductase in hamster kidney microsomes mediates one-electron reduction of estrogen quinones to free radicals (semiquinones), which may subsequently enter redox cycling with molecular oxygen to form 02-.. Moreover, quinone reductase reduces DES Q directly to E- and Z-DES, and thus may prevent the formation of toxic intermediates during redox cycling of estrogens. Measurements of quinone reductase activity in liver and kidney of hamsters treated with estrogen for various lengths of time revealed a temporary decrease in activity by 80% specifically in the kidney after 1 month of chronic treatment with estradiol. Thus, a temporary decrease in quinone reductase activity, which occurred specifically in estrogen-exposed hamster kidney, may enhance the formation of free radical intermediates generated during biotransformation of estrogens.  相似文献   

2.
P H Jellinck  J Fishman 《Biochemistry》1988,27(16):6111-6116
Estradiol and 2-hydroxyestradiol labeled with 3H at different positions in rings A or B were incubated with male rat liver microsomes, and their oxidative transformation was followed by the transfer of 3H into 3H2O. 14C-labeled estrogen or catechol estrogen was used to determine the fraction that becomes bound covalently to microsomal protein. The further metabolism of 2-hydroxyestradiol involves activation of the steroid at C-4 and, to a much lesser extent at C-1, by a cytochrome P-450 mediated reaction as indicated by the effects of NADPH, spermine, SKF-525A, and CO in the microsomal system. Glutathione promoted the loss of 3H from C-4 of either estradiol or 2-hydroxyestradiol but had less effect on this reaction at C-1 and inhibited it at C-6,7. It also abolished the irreversible binding of 14C-labeled estradiol and 2-hydroxyestradiol to microsomal protein. NADPH was needed specifically for glutathione to exert its effect both on the transfer of 3H into 3H2O and on the formation of water-soluble products from catechol estrogen by rat liver microsomes. It could not be replaced by NADP, NAD, or NADH. Ascorbic acid inhibited these enzymatic reactions but did not affect significantly the initial 2-hydroxylation of estradiol. Evidence is also provided for the further hydroxylation of 2-hydroxyestradiol at C-6 (or C-7). These results indicate that cytochrome P-450 activates catechol estrogens by an electron abstraction process.  相似文献   

3.
Cytochrome P-450-mediated redox cycling of estrogens   总被引:6,自引:0,他引:6  
The cytochrome P-450-mediated reactions of the synthetic stilbene estrogen (E)-diethylstilbestrol (DES) and of 2-hydroxyestradiol have been investigated in vitro. Depending on the cofactor used, microsomal enzymes catalyzed reductions and/or oxidations of the estrogens: Phenobarbital-induced rat liver microsomes catalyzed the oxidation of DES to 4',4"-diethylstilbestrol quinone (DES quinone) with cumene hydroperoxide as cofactor. The quinone was unstable and spontaneously rearranged to (Z,Z)-dienestrol. DES quinone was reduced to a mixture of E- and Z-isomers of DES by NADPH catalyzed by purified cytochrome P-450 reductase. After rearrangement of the quinone to (Z,Z)-dienestrol, reduction reactions did not proceed. Rat liver microsomes and NADPH catalyzed the conversion of DES to (Z,Z)-dienestrol and (Z)-DES, but DES quinone could not be detected. The reactions described provide direct evidence for microsome-mediated redox cycling of estrogens. Although DES quinone could not be detected in the incubation of DES, microsomes, and NADPH as cofactor, the intermediacy of the quinone is demonstrated by the formation of (Z,Z)-dienestrol, the marker product for oxidation. The quinone could not be detected because it was rapidly reduced to DES and its Z-isomer. Microsome-mediated redox cycling between 2-hydroxyestradiol and the corresponding quinone was also demonstrated. Using cumene hydroperoxide as cofactor, the oxidation to the quinone was favored, while with NADPH as cofactor the reduction to 2-hydroxyestradiol was preferred. It is postulated that microsome-mediated redox cycling of estrogens plays a role in hormonal carcinogenesis.  相似文献   

4.
Diethylstilbestrol (DES) or catecholestrogens are metabolized by microsomal enzymes to quinones, DES Q or catecholestrogen quinones, respectively, which have been shown to bind covalently to DNA and to undergo redox cycling. The isoforms of cytochrome P450 catalyzing this oxidation of estrogens to genotoxic intermediates were not known and have been identified in this study by (a) using microsomes of rats treated with various inducers of cytochrome P450; (b) using purified cytochrome P450 isoforms; and (c) examining the peroxide cofactor concentrations necessary for this oxidation by microsomes or pure isoenzymes. The highest rate of oxidation of DES to DES Q was obtained using beta-naphthoflavone-induced microsomes (14.0 nmol DES Q/mg protein/min) or cytochrome P450 IA1 (6.4 pmol DES Q/min/pmol P450). Isosafrole-induced microsomes or cytochrome P450 IA2 oxidized DES to quinone at one-third or one-fifth of that rate, respectively. Low or negligible rates of oxidation were measured when oxidations were catalyzed by microsomal rat liver enzymes induced by phenobarbital, ethanol, or pregnenolone-16 alpha-carbonitrile or by pure cytochromes P450 IIB1, IIB4, IIC3, IIC6, IIE1, IIE2, IIG1, or IIIA6. Cytochrome P450 IA1 also catalyzed the oxidation of 2- or 4-hydroxyestradiol to their corresponding quinones. The beta-naphthoflavone-induced microsomes and cytochrome P450 IA1 had the highest "affinity" for cumene hydroperoxide cofactor (Km = 77 microM). Cofactor concentrations above 250 microM resulted in decreased rates of oxidation. The other cytochrome P450 isoforms required much higher cofactor concentrations and were not inactivated at high cofactor concentrations. The data demonstrate that beta-naphthoflavone-inducible cytochrome P450 IA family enzymes catalyze most efficiently the oxidation of estrogenic hydroquinones to corresponding quinones. This oxidation may represent a detoxification pathway to keep organic hydroperoxides at minimal concentrations. The resulting quinone metabolites may be detoxified by other pathways. However, in cells with decreased detoxifying enzyme activities, quinones metabolites may accumulate and initiate carcinogenesis or cell death by covalent arylation of DNA or proteins.  相似文献   

5.
In this study, we have characterized the covalent binding of [14C]-2-chloro-4-acetotoluidide (CAT) radioactivity to microsomes of starling liver and kidney. The maximal velocity (Vmax) of covalent binding and apparent Michaelis constant (Km) for both tissues were similar. The Vmax for liver and kidney were 52.8 and 68.9 pmol/min/mg protein, and the apparent Kms were 0.54 and 0.87 mM, respectively. The covalent binding of radioactivity to heat-denatured microsomes of liver and kidney was reduced by 62% and 15%, respectively. Incubation at 0 degrees C reduced the binding by 80% to liver and 70% to kidney microsomes. Absence of nicotinamide adenine dinucleotide phosphate (NADP) and molecular O2 reduced the binding to liver microsomes by 36 and 53%, as opposed to 28% increase and 26% decrease in binding to kidney microsomes, respectively. Inducers of cytochrome P450 monooxygenase (P450), phenobarbital, and 3-methylcholanthrene (3-MC), had opposite effects on the covalent binding of [14C]-CAT radioactivity to hepatic and renal microsomes. Phenobarbital increased the binding to hepatic microsomes by 100% and had no effect on binding to renal microsomes. 3-MC, on the other hand, increased the binding to kidney microsomes by threefold and had no effect on the binding to hepatic microsomes. SKF 525A, an inhibitor of P450, inhibited the binding to hepatic microsomes by 60% at 0.5 mM but failed to have any effect on binding to renal microsomes. alpha-Naphthoflavone, another inhibitor of P450, had no effect on the covalent binding of [14C]-CAT radioactivity to microsomes of either tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of starvation on rat renal cytochrome P-450s were studied. The content of spectrally measured cytochrome P-450 in the renal microsomes of male rats increased 2-fold with 72 h starvation, but cytochrome b5 and NADPH-cytochrome P-450 reductase were not induced. 7-Ethoxycoumarin O-dealkylation and aniline hydroxylation activities of the renal microsomes of control male rats were very low but were induced 2.5-3-fold by 72 h starvation. Aminopyrine N-demethylation and lauric acid hydroxylation activities were induced 1.5-2-fold by 72 h starvation. The changes in catalytic activities suggested that the contents of individual cytochrome P-450s in the renal microsomes were altered by starvation. The contents of some cytochrome P-450s were measured by Western blotting. P450 DM (P450IIE1), a typical form of cytochrome P-450 induced by starvation in rat liver, was barely detected in rat kidney and was induced 2-fold by 72 h starvation. P450 K-5, a typical renal cytochrome P-450 and lauric acid hydroxylase, accounted for 81% of the spectrally measured cytochrome P-450 in the renal microsomes of control male rats and was induced 2-fold by 72 h starvation. P450 K-5 was not induced in rat kidney by treatment with chemicals such as acetone or clofibrate. The renal microsomes of male rats contained 6-times as much P450 K-5 as those of female rats. These results suggest that P450 K-5 is regulated by an endocrine factor.  相似文献   

7.
Estrogens have previously been shown to induce DNA damage in Syrian hamster kidney, a target organ of estrogen-induced cancer. The biochemical mechanism of DNA adduction has been postulated to involve free radicals generated by redox cycling of estrogens. As part of an examination of this postulate, we measured the effect of chronic estrogen treatment of hamsters on renal microsomal enzymes mediating catechol estrogen formation and free radical generation by redox cycling of catechol estrogens. In addition, the activities of the same enzymes were assayed in liver in which tumors do not develop under these conditions. At saturating substrate concentration, 2- and 4-hydroxyestradiol were formed in approximately equal amounts (26 and 28 pmol/mg protein/min, respectively), which is 1-2 orders of magnitude higher than reported previously. Estradiol treatment for 2 months decreased 2-hydroxylase activity per mg protein by 75% and 4-hydroxylase activity by 25%. Hepatic 2- and 4-hydroxylase activities were 1256 and 250 pmol/mg protein/min, respectively. Estrogen treatment decreased both activities by 40-60%. Basal peroxidatic activity of cytochrome P-450, the enzyme which oxidizes estrogen hydroquinones to quinones in the redox cycle, was 2.5-fold higher in liver than in kidney and did not change with estrogen treatment. However, when normalized for specific content of cytochrome P-450 the enzyme activity in kidney was 2.5-fold higher than in liver and increased further by 2-3-fold with chronic estrogen treatment. The activity of cytochrome P-450 reductase, which reduces quinones to hydroquinones in the estrogen redox cycle, was 6-fold higher in liver than in kidney of both control and estrogen-treated animals. When normalized for cytochrome P-450, the activity of this enzyme was similar in liver and kidney, but over 4-fold higher in kidney than liver after estrogen treatment. Basal concentrations of superoxide, a product of redox cycling, were 2-fold higher in liver than in kidney. Estrogen treatment did not affect this parameter in liver, but increased it in kidney by 40%. These data provide evidence for a preferential preservation of enzymes involved in estrogen activation.  相似文献   

8.
Microsomes isolated from whole rat brain were found to contain cytochreme P-450 (0.025 to 0.051 nmoles/mg) and NADPH cytochrome c reductase activity (26.0 to 55.0 nmoles/mg/min). The oxidation of estradiol to a reactive metabolite that became covalently bound to rat brain microsomal protein was inhibited 63% by an atmosphere of CO:O2 (9:1), indicating the involvement of a cytochrome P-450 oxygenase. In contrast, this atmosphere had no effect on the binding of either the catechol estrogen, 2-hydroxyestradiol, or several catecholamines to rat brain microsomes. An antibody prepared against NADPH cytochrome c reductase was found to decrease significantly both the formation of 2-hydroxyestradiol from estradiol by rat brain microsomes and the covalent binding of the catechol estrogen and catecholamines to rat brain microsomal protein.  相似文献   

9.
A single injection of cobalt-protoporphyrin (CoPP), which produces a marked and sustained decline in hepatic cytochrome P450 content, reduced the ability of male rat liver microsomes to form catechol estrogens to about 30% of control values within 1 day, as measured by the release of 3H2O from [2-3H]estradiol. Two days after treatment, the apparent Km of estrogen 2-hydroxylase for estradiol was increased, but other inhibitors of cytochrome P450 function (SKF-525A or piperonyl butoxide) failed to affect the enzyme. Inhibition by CoPP was also demonstrated by measuring the conversion of [4-14C]estradiol to its 2-hydroxylated derivative visualized by autoradiography after chromatographic separation. These findings point to yet another site in the multifaceted action of cobalt protoporphyrin.  相似文献   

10.
The oral administration of indole-3-carbinol (IC), present in cabbage and other members of the Cruciferae family, to female rats almost doubled their ability to convert estradiol to catechol estrogens in the liver. This was determined by the release of 3H from C-2 of the estrogen and also by isolation of the 14C-labeled catechol derivative after incubation with hepatic microsomal fractions. The yield of 4-hydroxyestradiol was also elevated and these effects were similar to those produced by 3-methylcholanthrene (MC), a well-characterized cytochrome P450 inducer. Further evidence for the involvement of a mixed-function oxidase was provided by a 70% to 80% decrease in the yield of 3H2O and water-soluble radioactivity by SKF-525A (0.1 mM) when added to the microsomal fractions isolated from the livers of control or IC-treated rats. In addition, NADPH could not be replaced by NADH in these experiments. Pretreatment with ethionine prevented the increase in estradiol metabolism brought about by oral administration of IC. Both IC and MC inhibited catechol estrogen formation when added directly to the liver microsomal system, confirming earlier findings that in vivo inducers can act as in vitro inhibitors. However, IC was less inhibitory than MC, supporting the theory that IC is converted to a more active product in the stomach. Thus, IC may be conferring protection against estrogen-dependent neoplasia by increasing the hepatic oxidation of estradiol, thereby lowering the amount of available active estrogen.  相似文献   

11.
To establish a prediction system for drug-induced gynecomastia in clinical fields, a model reaction system was developed to explain numerically this side effect. The principle is based on the assumption that 50% inhibition concentration (IC(50)) of drugs on the in vitro metabolism of estradiol (E2) to its major product 2-hydroxyestradiol (2-OH-E2) can be regarded as the index for achieving this purpose. By using human cytochrome P450s coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli as the enzyme, the reaction was examined. Among the nine enzymes (CYP1A1, 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) tested, CYP3A4 having a V(max)/K(m) (ml/min/nmol P450) value of 0.32 for production of 2-OH-E2 was shown to be the most suitable enzyme as the reagent. The inhibitory effects of ketoconazole, cyclosporin A, and cimetidine toward the 2-hydroxylation of E2 catalyzed by CYP3A4 were obtained, and their IC(50) values were 7 nM, 64 nM, and 290 microM, respectively. The present results suggest that IC(50) values thus obtained can be substituted as the prediction index for gynecomastia induced by drugs, considering the patients' individual information.  相似文献   

12.
The aim of the study was to evaluate the effect of acetaminophen (APAP) and/or trichloroethylene (TRI) on the liver cytochrome P450-dependent monooxygenase system, CYP2E1 and CYP1A2 (two important P450 isoforms), and liver glutathione (GSH) content in rats. Rats were given three different doses of APAP (250, 500 and 1000 mg/kg b...) and then the above-mentioned parameters were measured for 48 h. The lowest APAP dose produced small changes in the cytochrome P450 content of liver. At 500 mg/kg APAP increased the cytochrome P450 content to 230% of the control. The inductive effect was seen at 1000 mg/kg dose but at 24 h and later. NADPH-cytochrome P450 reductase activity was the highest after the lowest dose of APAP, while after the highest dose it was equal to the control value. TRI increased both the cytochrome P450 content and the NADPH-cytochrome P450 reductase activity. When TRI was combined with APAP, both these parameters increased in the first hours of observation, but they returned to the control values at 24 h. When APAP was given at 250 mg/kg, GSH levels decreased to 55% of the control at 8 h and returned to the control values at 24 h. The higher doses of APAP decreased GSH levels more than the lowest dose, but after 24 h GSH levels did not differ from those of the control. When TRI was given at 250 mg/kg, the GSH levels decreased to 68% of the control at 2 h and then they increased gradually and tended to exceed the control values at 48 h. The effect of TRI combined with APAP on the level of GSH was virtually the same as that of APAP alone given at 500 mg/kg.  相似文献   

13.
The action of a number of different divalent metal ions on the rat liver microsomal release of 3H2O from estradiol and 2-hydroxyestradiol labeled with 3H at C-2 or C-4 was investigated. Cu2+ at low concentration (10 microM) produced a marked and specific inhibition of the 2-hydroxylation of estradiol with virtually no effect on the further oxidative activation of catechol estrogen. In contrast, Zn2+ inhibited the interaction of 2-hydroxyestradiol with microsomal protein as measured by the release of 3H from C-4 of the labeled steroids but did not influence 2-hydroxylation, except at high concentration. Other metal ions tested produced little or no change. Cu2+ inhibited the irreversible binding of estradiol to protein but activated this reaction with the catechol estrogen as substrate. The action of both Cu2+ and Zn2+ was reversed by glutathione. The differential effect of these metal ions on estrogen metabolism gives additional support for two different mechanisms in the cytochrome P-450-catalyzed formation of catechol estrogens and their further activation to form protein conjugates.  相似文献   

14.
Six alkyl ethers of 7-hydroxycoumarin, ranging from methoxy- to hexoxycoumarin, were studied for their NADPH-dependent metabolism by liver microsomes of male rats treated with phenobarbital (PB) or 3-methyl-cholanthrene (MC). The six alkyl ethers were metabolized by both types of microsomes, forming 7-hydroxycoumarin as the major product. Among the test compounds, 7-methoxycoumarin was unusual in that its dealkylation was inducible only by PB and not by MC. PB increased 7-methoxycoumarin-O-demethylase (MOCD) activity about four- to eightfold. Metyrapone strongly inhibited MOCD in PB-treated microsomes but not in MC-treated microsomes. Similarly, monoclonal antibodies directed toward PB-induced cytochrome P450s selectively suppressed MOCD in PB-treated microsomes. MOCD activity was observed in preparations of SD1 cells containing only cytochrome P450IIB1, while it was not found in preparations of XEM1 cells containing only cytochrome P450IA1. Demethylation of 7-methoxycoumarin was also mediated by the constitutive cytochrome P450 form(s) of liver, lung, small intestine, and kidney (in decreasing order). PB increased MOCD activity of small intestine by 40% but was without effect on the dealkylation activity of lung and kidney. MOCD activity was also detectable in differentiated rat hepatoma lines H4IIEC3 and 2sFou. The studies indicate that dealkylation of 7-methoxycoumarin is a highly sensitive, simple, and practical assay for estimating constitutive and PB-inducible cytochrome P450-dependent monooxygenase activities.  相似文献   

15.
Carcinogenicity of catechol estrogens in Syrian hamsters   总被引:30,自引:0,他引:30  
Estradiol and other estrogens induce renal carcinoma in male Syrian hamsters. The mechanism of carcinogenesis still remains unclear. Activation of estrogens to catechol metabolites has in the past been postulated to play a role in estrogen-induced carcinogenesis. Therefore, the carcinogenic activity of catechol estrogens was investigated. After 175 days of treatment, 4-hydroxyestradiol was found to be as carcinogenic as estradiol in male Syrian hamsters (4/5 and 4/5 animals with kidney tumors, respectively). Animals treated with 2-hydroxyestradiol (0/5) or 2-methoxyestradiol (0/6) did not develop renal carcinoma. The catechol estrogens failed to be mutagenic in the Ames test (reversions of his- S. typhimurium to histidine prototrophy in the TA 100 strain). The lack of carcinogenic activity of 2-hydroxyestradiol was not due to a failure to stimulate estrogen-dependent tumor growth. Growth of H-301 cells, an estrogen-dependent hamster kidney tumor cell line, was supported in vivo by estrogens in the following order: estradiol greater than 4-hydroxyestradiol greater than 2-hydroxyestradiol. Stimulation of tumor growth by 2-methoxyestradiol was not detected. It was concluded that the carcinogenic activity of 4-hydroxyestradiol was consistent with a role of catechol metabolites in estrogen-induced carcinogenesis. However, the intrinsic carcinogenic or hormonal activity of 2-hydroxyestradiol probably can not be assessed accurately in vivo because of its rapid methylation and metabolic clearance.  相似文献   

16.
The effects of exogenous hormone treatment on the expression of cytochromes P450 2C7 and P450 2C11 were studied in neonatally gonadectomized and sham-operated male and female rats. Hepatic levels of cytochrome P450 2C7 were found to be two- to threefold higher in intact adult female versus male rats. Neonatal gonadectomy resulted in a reversal of the relative cytochrome P450 2C7 levels in male and female animals at maturity. Expression of this isozyme was restored in ovariectomized females by estradiol treatment. Furthermore, neonatal and/or pubertal administration of estradiol to intact male rats induced cytochrome P450 2C7 to adult female levels. On the other hand, administration of testosterone at all times examined had no effect in intact female rats, but decreased cytochrome P450 2C7 to normal levels in neonatally castrated males treated during adulthood. Neonatal testosterone treatment also increased hepatic cytochrome P450 2C7 content in both ovariectomized females and intact males. These results indicate that estrogen is required for full expression of cytochrome P450 2C7 while the effect of testosterone is ambiguous. In comparison, neonatal gonadectomy of male rats abolished the adult expression of cytochrome P450 2C11. Normal levels were restored only by treatment with testosterone during adulthood. Neonatal testosterone treatment did not induce cytochrome P450 2C11 levels in gonadectomized rats of either sex. In contrast, neonatal estrogen treatment suppressed cytochrome P450 2C11 expression in intact adult male rats to the same extent as neonatal castration. These results indicate that androgen exposure during the adult, and not the neonatal, phase is essential for full expression of cytochrome P450 2C11.  相似文献   

17.
The rat kidney microsomal epoxygenase catalyzed the asymmetric epoxidation of arachidonic acid to generate as major products: 8(R),9(S)-, 11(R),12(S)- and 14(S),15(R)-epoxyeicosatrienoic acids with optical purities of 97, 88, and 70%, respectively. Inhibition studies utilizing a panel of polyclonal antibodies to several rat liver cytochrome P-450 isoforms, indicated that the renal epoxygenase(s) belongs to the cytochrome P-450 2C gene family. Dietary salt, administered either as a 2-2.5% (w/v) solution in the drinking water or as a modified solid diet containing 8% NaCl (w/w), resulted in marked and selective increases in the renal microsomal epoxygenase activity (416 and 260% of controls, for the liquid and solid forms of NaCl, respectively) with no significant changes in the microsomal omega/omega-1 oxygenase or in the hepatic arachidonic acid monooxygenase reaction. Immunoblotting studies demonstrated that dietary salt induced marked increases in the concentration of a cytochrome P-450 isoform(s) recognized by polyclonal antibodies raised against human liver cytochrome P-450 2C10 or rat liver cytochrome P-450 2C11. Comparisons of the stereochemical selectivity of the induced and non-induced microsomal epoxygenase(s) with that of purified rat liver cytochrome P-450 2C11 suggest that the salt-induced protein(s) is catalytically and structurally different from liver cytochrome P-450 2C11. The in vivo significance of dietary salt in regulating the activities of the kidney endogenous arachidonic acid epoxygenase was established by the demonstration of a salt-induced 10-20-fold increase in the urinary output of epoxygenase metabolites. These results, in conjunction with published evidence demonstrating the potent biological activities of its metabolites, suggest a role for the epoxygenase in the renal response to dietary salt.  相似文献   

18.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

19.
《Free radical research》2013,47(8):1051-1057
Abstract

Excess estrogen stimulates the proliferation of mammary epithelial cells and hence represents a major risk factor for breast cancer. Estrogen is subjected to cytochrome P450-catalysed oxidative metabolism to produce an oncogenic catechol estrogen, 4-hydroxyestradiol (4-OHE2). 4-OHE2 undergoes redox cycling during which reactive oxygen species (ROS) as well as the chemically reactive estrogen semiquinone and quinone intermediates are produced, thereby contributing to hormonal carcinogenesis. Resveratrol (3,4′,5-trihydroxy stilbene), a phytoalexin present in grapes, has been reported to possess chemopreventive and chemotherapeutic activities. In the present study, we examined the inhibitory effects of resveratrol on 4-OHE2-induced transformation of human breast epithelial MCF-10A cells. Resveratrol inhibited migration and anchorage-independent growth of MCF-10A cells treated with 4-OHE2. Resveratrol treatment suppressed the 4-OHE2-induced activation of IκB kinaseβ (IKKβ) and phosphorylation of IκBα, and consequently NF-κB DNA binding activity and cyclooxygenase-2 (COX-2) expression. Resveratrol suppressed ROS production and phosphorylation of Akt and ERK induced by 4-OHE2 treatment. In conclusion, resveratrol blocks activation of IKKβ-NF-κB signalling and induction of COX-2 expression in 4-OHE2-treated MCF-10A cells, thereby suppressing migration and transformation of these cells.  相似文献   

20.
The effects of di-(2-ethylhexyl)-phthalate (DEPH) on the levels of cytochrome P-450 and b5 monooxygenases were studied in the rat kidney and liver in acute renal failure induced by glycerol. Intramuscular injection of glycerol (50%,10 ml x kg(-1)) to rats produced proximal tubular damage and acute renal failure. The indicators of renal function, serum urea and creatinine significantly increased (480 and 350 percent, respectively). In control and glycerol-treated animals DEPH had no significant effect on the concentrations of serum urea and creatinine. Twenty-four hours after glycerol injection the total amount of cytochrome P-450 and b5 significantly decreased in renal but increased in liver microsomal fractions. Moreover, 48 and 72 hours after glycerol injection the level of cytochrome P-450 and b5 significantly increased in both organs. A single dose of DEPH (2 ml x kg(-1), i.p.) also elevated the total cytochrome P-450 and b5 in control animals. This enhancing effect of DEPH was additive to that of glycerol in glycerol-induced acute renal failure. These results indicate that DEPH and glycerol evoked pathological changes may affect the metabolism of xenobiotics plus endogenous hormones in the liver and in kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号