首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gall-inducing insects exert a unique level of control over the physiology of their host plants. This control can extend to host–plant defenses so that some, if not most, gall-inducing species appear to avoid or modify host plant defenses to effect production of their gall. Included among gall insects is Hessian fly (Mayetiola destructor [Say], Diptera: Cecidomyiidae), a damaging pest of wheat (Triticum aestivum L.) and an emerging model system for studying plant–insect interactions. We studied the dynamics of some defense-related phytohormones and associated fatty acids during feeding of first instar Hessian fly larvae on a susceptible variety of wheat. We found that Hessian fly larvae significantly elevated in their host plants’ levels of linolenic and linoleic acids, fatty acids that may be nutritionally beneficial. Hessian fly larvae also elevated levels of indole-3-acetic acid (IAA), a phytohormone hypothesized to be involved in gall formation, but not the defense-related hormones jasmonic (JA) and salicylic acids. Moreover, we detected in Hessian fly-infested plants a significant negative relationship between IAA and JA that was not present in control plants. Our results suggest that Hessian fly larvae may induce nutritionally beneficial changes while concomitantly altering phytohormone levels, possibly to facilitate plant-defense avoidance.  相似文献   

2.
Abstract.  1. Recent research has addressed the function of herbivore-induced plant volatiles in attracting natural enemies of feeding herbivores. While many types of insect herbivory appear to elicit volatile responses, those triggered by gall insects have received little attention. Previous work indicates that at least one gall insect species induces changes in host-plant volatiles, but no other studies appear to have addressed whether gall insects trigger plant indirect defences.
2. The volatile responses of wheat to feeding by larvae of the Hessian fly Mayetiola destructor (Say) (Diptera: Cecidomyiidae) were studied to further explore indirect responses of plants to feeding by gall insects. This specialist gall midge species did not elicit a detectable volatile response from wheat plants, whereas a generalist caterpillar triggered volatile release. Moreover, Hessian fly feeding altered volatile responses to subsequent caterpillar herbivory.
3. These results suggest that Hessian fly larvae exert a degree of control over the defensive responses of their host plants and offer insight into plant-gall insect interactions. Also, the failure of Hessian fly larvae to elicit an indirect defensive response from their host plants may help explain why natural enemies, which often rely on induced volatile cues, fail to inflict significant mortality on M. destructor populations in the field.  相似文献   

3.
Carbon and nitrogen (C/N) metabolism and allocation within the plant have important implications for plant-parasite interactions. Many plant parasites manipulate the host by inducing C/N changes that benefit their own survival and growth. Plant resistance can prevent this parasite manipulation. We used the wheat-Hessian fly (Mayetiola destructor) system to analyze C/N changes in plants during compatible and incompatible interactions. The Hessian fly is an insect but shares many features with plant pathogens, being sessile during feeding stages and having avirulence (Avr) genes that match plant resistance genes in gene-for-gene relationships. Many wheat genes involved in C/N metabolism were differentially regulated in plants during compatible and incompatible interactions. In plants during compatible interactions, the content of free carbon-containing compounds decreased 36%, whereas the content of free nitrogen-containing compounds increased 46%. This C/N shift was likely achieved through a coordinated regulation of genes in a number of central metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and amino-acid synthesis. Our data on plants during compatible interactions support recent findings that Hessian fly larvae create nutritive cells at feeding (attack) sites and manipulate host plants to enhance their own survival and growth. In plants during incompatible interactions, most of the metabolic genes examined were not affected or down-regulated.  相似文献   

4.
Several carbohydrases and glycosidases from the alimentary cancal and/or salivary glands of feeding larvae of mayetiola destructor have been identified. Pectinase activity was identified in the midgut and may be present in the salivary glands. No endocellulase activity was found in larvae; however, hemicellulase activity was detected in extract of larvae. Amylase activity was present in midguts from feeding larvae and at a low level in extract of salivary glands. Amylases detected in the midgut showed mobilities during polyacrylamide gel electrophoresis similar to the two major amylases in tissues of the insect's host plant. The possibility exists that Hessian fly larvae utilize amylases obtained from their host plant in the digestion of starch. The major glycosidases detected in the midgut lumen of larve were: α-D-glucosidase and α-D-and β-D-galactosidase. The role of these enzymes in the feeding process of Hessian fly larvae is discussed as well as their potential role in feeding damage to wheat.  相似文献   

5.
Hessian fly, Mayetiola destructor (Say), is the most important insect pest of wheat in Morocco, where host plant resistance has been used successfully for control. Our objective was to determine the frequency of Hessian fly virulence on H5, H13 and H22 resistance genes. Five Hessian fly populations from the principal cereal‐growing regions in Morocco were studied. The variability in percentage of susceptible plants across Hessian fly populations was highly significant (P < 0.01), indicating differences in virulence frequencies. Plants with the H13 gene had the lowest percentage of susceptible plants, 1.77 and 1.51%, when infested with Hessian flies from Fes and Marchouch, respectively. A low level of virulence to H22 was detected in Fes, Abda and Marchouch populations, 1.87, 1.54 and 1.99% susceptible plants, respectively. The level of virulence to H5 was low in all the five populations. The Beni Mellal population gave the highest percentage of susceptible plants carrying H13 and H22 genes, 6.43 and 7.28%, respectively. The size of live larvae on susceptible plants of the three cultivars carrying H5, H13 and H22 was similar to that of the susceptible check, indicating that a true virulence (biotype) is developing in Hessian fly populations in Morocco. Thus, continuous monitoring of the development of Hessian fly biotypes is essential for optimal deployment of resistance genes.  相似文献   

6.
In the present investigation an effort was made to realise the role of feeding host plants on some enzymes’ activities. The results showed that the enzymes’ activities were changed in the aphids feeding on different host plants which assist in detoxification of their host metabolites. It is important when the aphids are exposed to insecticides. The results indicated that the measured enzyme activity has significant changes depending on the host plant. It is shown in this study that there are no significant differences between different host plants on esterase activity (p = 0.446); however, there is a significant difference between GSH activity (p = 0.047) but this relationship is not significant on MFO activity (p = 0.417). Among three strains of Ag-PP, Ag-MO and Ag-FA, strain Ag-PP was the most resistant strain against neonicotinoids, and the resistance mechanism was related to metabolic increase in carboxyl esterase activity. The results showed that strain of Ag-MO was the most susceptible strain against neonicotinoids. The result of this investigation also showed that the general esterases might play an important role in conferring or contributing to neonicotinoid resistance in the cotton aphids.  相似文献   

7.
The focus of the present study was to compare ultrastructure in the midguts of larvae of the Hessian fly, Mayetiola destructor (Say), under different feeding regimens. Larvae were either fed on Hessian fly-resistant or -susceptible wheat, and each group was compared to starved larvae. Within 3 h of larval Hessian fly feeding on resistant wheat, midgut microvilli were disrupted, and after 6 h, microvilli were absent. The disruption in microvilli in larvae feeding on resistant wheat were similar to those reported for midgut microvilli of European corn borer, Ostrinia nubilasis (Hubner), larvae fed a diet containing wheat germ agglutinin. Results from the present ultrastructural study, coupled with previous studies documenting expression of genes encoding lectin and lectin-like proteins is rapidly up-regulated in resistant wheat to larval Hessian fly, are indications that the midgut is a target of plant resistance compounds. In addition, the midgut of the larval Hessian fly is apparently unique among other dipterans in that no peritrophic membrane was observed. Ultrastructural changes in the midgut are discussed from the prospective of their potential affects on the gut physiology of Hessian fly larvae and the mechanism of antibiosis in the resistance of wheat to Hessian fly attack.  相似文献   

8.
We investigated host race formation in Galerucella tenella, a leaf beetle which feeds preferentially on meadowsweet (Rosaceae) in its natural habitats, but has become an important pest on strawberry (Rosaceae) in agricultural areas. Beetles from two isolated sites (Skeppsvik in Sweden and Solf in Finland) were compared with respect to preference and performance. At Skeppsvik the beetles were found feeding on meadowsweet, while at Solf large populations only develop in strawberry plantations, despite the presence of meadowsweet.In reciprocal field transplantations and laboratory bioassays, beetles from both sites discriminated against their foreign host, using their natal plant to a significantly higher degree for both egg laying and feeding, but with one interesting exception, namely that beetles from Solf increased their use of and even preferred meadowsweet for feeding in the laboratory. This increased use of meadowsweet by adult Solf beetles in the laboratory (without conspecific competitors) may be attributed to a density-dependent strategy, whereby mothers avoid pre-emptying the nutritional resources of the plants that will host their offspring in cases where no competitors are present.Larval fitness did not differ significantly between host plants, although larval survival of Solf beetles was halved when reared on their non-natal host plant (meadowsweet). Although beetles from both sites preferred to oviposit on their local host plant, our results provide little evidence that this presumed adaptation has to do with the nutritional quality of the plants involved. Instead, we suggest that other factors associated with the plants, such as enemy-free space and resistance to drought may be more important selective agents, shaping host preference in the field.  相似文献   

9.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described.  相似文献   

10.
In order to better understand the maintenance of a fairly narrow diet breadth in monarch butterfly larvae, Danaus plexippus L. (Lepidoptera: Nymphalidae: Danainae), we measured feeding preference and survival on host and non-host plant species, and sensitivity to host and non-host plant chemicals. For the plant species tested, a hierarchy of feeding preferences was observed; only plants from the Asclepiadaceae were more or equally preferred to Asclepias curassavica, the common control. The feeding preferences among plant species within the Asclepiadaceae are similar to published mean cardenolide concentrations. However, since cardenolide data were not collected from individual plants tested, definitive conclusions regarding cardenolide concentrations and plant acceptability cannot be made. Although several non-Asclepiadaceae were eaten in small quantities, all were less preferred to A. curassavica. Additionally, these non-Asclepiadaceae do not support continued feeding, development, and survival of first and fifth-instar larvae. Preference for a host versus a non-host (A. curassavica versus Vinca rosea) increased for A. curassavica reared larvae as compared to diet-reared larvae suggesting plasticity in larval food preferences. Furthermore, host species were significantly preferred over non-host plant species in bioassays using a host plant or sucrose as a common control. Larval responses to pure chemicals were examined in order to determine if host and non-host chemicals stimulate or deter feeding in monarch larvae. We found that larvae were stimulated to feed by some ubiquitous plant chemicals, such as sucrose, inositol, and rutin. In contrast, several non-host plant chemicals deterred feeding: caffeine, apocynin, gossypol, tomatine, atropine, quercitrin, and sinigrin. Additionally the cardenolides digitoxin and ouabain, which are not in milkweed plants, were neutral in their influence on feeding. Another non-milkweed cardenolide, cymarin, significantly deterred feeding. Extracts of A. curassavica leaves were tested in bioassays to determine which components of the leaf stimulate feeding. Both an ethanol extract of whole leaves and a hexane leaf-surface extract are phagostimulatory, suggesting the involvement of both polar and non-polar plant compounds. These data suggest that the host range of D. plexippus larvae is maintained by both feeding stimulatory and deterrent chemicals in host and non-host plants.  相似文献   

11.
12.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

13.
Drought events are predicted to increase due to climate change, yet consequences for plant–insect interactions are only partially understood. Drought‐mediated interactions between herbivores and their host plants are affected by a combination of factors, including characteristics of the affected plant, its associated herbivore and of the prevailing drought. Studying the effect of these factors in combination may provide important insight into plant and herbivore responses to drought. We studied drought effects on plant resistance to two leaf‐chewing herbivores by considering differing growth conditions, plant chemistry and insect responses in concert. We exposed Alliaria petiolata plants from several wild populations to different intensities of intermittent drought stress and quantified drought‐mediated changes in plant chemistry. Simultaneously, we assessed behavior (feeding preference) and performance of two lepidopteran herbivores: Pieris brassicae, a specialist, and Spodoptera littoralis, a generalist. Drought led to lowest concentrations of secondary defense compounds in severely stressed plants, without affecting total nitrogen content. Additionally, drought evoked opposite patterns in feeding preferences (plant palatability) between the herbivore species. Pieris brassicae consumed most of well‐watered plants, while S. littoralis preferred severely drought‐stressed plants. Hence, feeding preferences of S. littoralis reflected changes in plant secondary chemistry. Contrary to their feeding preference, P. brassicae performed better on drought‐stressed than on well‐watered plants, with faster development and higher attained pupal mass (plant suitability). Spodoptera littoralis showed retarded development in all treatments. In conclusion, drought caused plant secondary defense compounds to decrease consistently across all studied plant populations, which evoked contrasting feeding preferences of two herbivore species of the same feeding guild. These results suggest herbivore specificity as a possible explanation for herbivore responses to drought and emphasize the importance of herbivore characteristics such as feeding specialization in understanding and predicting consequences of future drought events.  相似文献   

14.
Interactions between plants and herbivorous insects have been models for theories of specialization and co‐evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed‐specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole‐body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP‐glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.  相似文献   

15.
The evolution of associations between herbivorous insects and their parasitoids is likely to be influenced by the relationship between the herbivore and its host plants. If populations of specialized herbivorous insects are structured by their host plants such that populations on different hosts are genetically differentiated, then the traits affecting insect-parasitoid interactions may exhibit an associated structure. The pea aphid (Acyrthosiphon pisum) is a herbivorous insect species comprised of genetically distinct groups that are specialized on different host plants (Via 1991a, 1994). Here, we examine how the genetic differentiation of pea aphid populations on different host plants affects their interaction with a parasitoid wasp, Aphidius ervi. We performed four experiments. (1) By exposing pea aphids from both alfalfa and clover to parasitoids from both crops, we demonstrate that pea aphid populations that are specialized on alfalfa are successfully parasitized less often than are populations specialized on clover. This difference in parasitism rate does not depend upon whether the wasps were collected from alfalfa or clover fields. (2) When we controlled for potential differences in aphid and parasitoid behavior between the two host plants and ensured that aphids were attacked, we found that pea aphids from alfalfa were still parasitized less often than pea aphids from clover. Thus, the difference in parasitism rates is not due to behavior of either aphids or wasps, but appears to be a physiologically based difference in resistance to parasitism. (3) Replicates of pea aphid clones reared on their own host plant and on a common host plant, fava bean, exhibited the same pattern of resistance as above. Thus, there do not appear to be nutritional or secondary chemical effects on the level of physiological resistance in the aphids due to feeding on clover or alfalfa, and therefore the difference in resistance on the two crops appears to be genetically based. (4) We assayed for genetic variation in resistance among individual pea aphid clones collected from clover fields and found no detectable genetic variation for resistance to parasitism within two populations sampled from clover. This is in contrast to Henter and Via's (1995) report of abundant genetic variation in resistance to this parasitoid within a pea aphid population on alfalfa. Low levels of genetic variation may be one factor that constrains the evolution of resistance to parasitism in the populations of pea aphids from clover, leading them to remain more susceptible than populations of the same species from alfalfa.  相似文献   

16.
1. Plants possess numerous traits that confer resistance against insect herbivores, and herbivores, in turn, can evolve traits to ameliorate the effectiveness of these traits. The pipevine swallowtail, Battus philenor, is an extreme specialist on plants in the genus Aristolochia. The only host plant available to the California population of B. philenor is A. californica. Aristolochia californica is distinct from most other B. philenor host plants in that it is pubescent. 2. The progeny of B. philenor are larger in California compared with populations examined in Texas. Size differences persist throughout larval development. 3. Regardless of maternal host plant, population differences in progeny size persist, and crosses between California (large progeny) and Texas (small progeny) B. philenor populations resulted in offspring producing intermediate sized progeny, indicating a heritable component to progeny size variation. 4. California neonate caterpillars more easily overcame the trichomes of A. californica compared with Texas neonates. When trichomes were removed from A. californica, time to feeding establishment was reduced for caterpillars from both populations. Texas caterpillars established feeding sites on A. californica with trichomes removed, in the same time required to establish feeding on their non‐pubescent host plant, A. erecta. 5. This study shows that plant trichomes might impose selection pressure on progeny size.  相似文献   

17.
18.
Pioneer herbivorous insects may find their host plants through a combination of visual and constitutive host‐plant volatile cues, but once a site has been colonized, feeding damage changes the quantity and quality of plant volatiles released, potentially altering the behavior of conspecifics who detect them. Previous work on the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), demonstrated that this insect can detect and orient to constitutive host plant volatiles released from pepper [Capsicum annuum L. (Solanaceae)]. Here we investigated the response of the weevil to whole plants and headspace collections of plants damaged by conspecifics. Mated weevils preferred damaged flowering as well as damaged fruiting plants over undamaged plants in a Y‐tube olfactometer. They also preferred volatiles from flowering and fruiting plants with actively feeding weevils over plants with old feeding damage. Both sexes preferred volatiles from fruiting plants with actively feeding weevils over flowering plants with actively feeding weevils. Females preferred plants with 48 h of prior feeding damage over plants subjected to weevil feeding for only 1 h, whereas males showed no preference. When attraction to male‐ and female‐inflicted feeding damage was compared in the Y‐tube, males and females showed no significant preference. Wind tunnel plant assays and four‐choice olfactometer assays using headspace volatiles confirmed the attraction of weevils to active feeding damage on fruiting plants. In a final four‐choice olfactometer assay using headspace collections, we tested the attraction of mated males and virgin and mated females to male and female feeding damage. In these headspace volatile assays, mated females again showed no preference for male feeding; however, virgin females and males preferred the headspace volatiles of plants fed on by males, which contained the male aggregation pheromone in addition to plant volatiles. The potential for using plant volatile lures to improve pepper weevil monitoring and management is discussed.  相似文献   

19.
The discovery of a new exotic insect herbivore triggers responses from biosecurity agencies, one of which is the decision of whether or not to attempt eradication. Rapid determination of the host range of the new invader is necessary, but when sap‐sucking insects are first collected from plants, the lack of visible signs of feeding damage makes it difficult to determine their host status. We investigated the Electrical Penetration Graph (EPG‐DC) technique as tool to assess host range of a xylem sap‐feeding invader, using Carystoterpa fingens (Hemiptera: Aphrophoridae), a New Zealand endemic xylem feeder, as a model insect. Real‐time probing and feeding events over a 12‐h recording period were compared for adult C. fingens on 18 plant species. Hebe azure, a known host, was designated the ‘reference plant species’ against which events on all other plants were statistically compared. EPG waveforms were categorized on their amplitude, frequency, voltage and electrical origin, and six parameters (time taken to first probe, time to first xylem ingestion from first probe, total probing time, number of xylem‐ingesting events, duration of the longest xylem‐ingesting event and total xylem ingestion time) were measured. The total xylem ingestion period (i.e. the actual feeding period) on each plant species expressed as a percentage of total probing time was considered the best parameter for comparing the host status of plants with H. azure. Although the EPG data overestimated the actual host range of C. fingens, we consider that they provided a reasonable first guide to the potential host status of the unknown plants, and so might usefully be used to rapidly assess whether a plant from which a new invader was collected was a host, or whether the association was merely incidental.  相似文献   

20.
陈澄宇  康志娇  史雪岩  高希武 《昆虫学报》2015,58(10):1126-1130
植物次生物质(plant secondary metabolites)对昆虫的取食行为、生长发育及繁殖可以产生不利影响,甚至对昆虫可以产生毒杀作用。为了应对植物次生物质的不利影响,昆虫通过对植物次生物质忌避取食、解毒代谢等多种机制,而对寄主植物产生适应性。其中,昆虫的解毒代谢酶包括昆虫细胞色素P450酶系(P450s)及谷胱甘肽硫转移酶(GSTs)等,在昆虫对植物次生物质的解毒代谢及对寄主植物的适应性中发挥了重要作用。昆虫的解毒酶系统不仅可以代谢植物次生物质,还可能代谢化学杀虫剂,因而昆虫对寄主植物的适应性与其对杀虫剂的耐药性甚至抗药性密切相关。昆虫细胞色素P450s和GSTs等代谢解毒酶活性及相关基因的表达可以被植物次生物质影响,这不仅使昆虫对寄主植物的防御产生了适应性,还影响了昆虫对杀虫剂的解毒代谢,因而改变昆虫的耐药性或抗药性。掌握昆虫对植物次生物质的代谢适应机制及其在昆虫抗药性中的作用,对于明确昆虫的抗药性机制具有重要的参考意义。本文综述了植物次生物质对昆虫的影响、昆虫对寄主植物次生物质的代谢机制、昆虫对植物次生物质的代谢适应性对昆虫耐药性及抗药性的影响等方面的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号