首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
The nature of the forces affecting base composition is a key question in genome evolution. There is uncertainty as to whether differences in the GC contents of non-coding sequences reflect differences in mutational bias, or in the intensity of selection or biased gene conversion. We have used a polymorphism dataset for non-coding sequences on the X chromosome of Drosophila simulans to examine this question. The proportion of GC-->AT versus AT-->GC polymorphic mutations in a locus is correlated with its GC content. This implies the action of forces that favour GC over AT base pairs, which are apparently strongest in GC-rich sequences.  相似文献   

2.
Schmegner C  Hoegel J  Vogel W  Assum G 《Genetics》2007,175(1):421-428
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.  相似文献   

3.
This paper establishes that recombination drives the evolution of GC content in a significant way. Because the human P-arm pseudoautosomal region (PAR1) has been shown to have a high recombination rate, at least 20-fold more frequent than the genomic average of approximately 1 cM/Mb, this region provides an ideal system to study the role of recombination in the evolution of base composition. Nine non-coding regions of PAR1 are analyzed in this study. We have observed a highly significant positive correlation between the recombination rate and GC content (rho = 0.837, p < or = 0.005). Five regions that lie in the distal part of PAR1 are shown to be significantly higher than genomic average divergence. By comparing the intra- and inter-specific AT->GC -GC->AT ratios, we have detected no fixation bias toward GC alleles except for L254915, which has excessive AT-->GC changes in the human lineage. Thus, we conclude that the high GC content of the PAR1 genes better fits the biased gene conversion (BGC) model.  相似文献   

4.
DNA sequences evolving differently in the human and chimpanzee genomes signal recent and regionally limited changes in the process of DNA sequence evolution. Here we present the comparison of 90 kb from the nonrecombining part of the human Y chromosome to the corresponding part of the chimpanzee genome using gorilla as out-group. Our results reveal a significant difference in the region-specific substitution process among the human and chimpanzee lineages. As a consequence, this region experiences a change in its GC content on the human lineage while it resides in compositional equilibrium on the chimpanzee lineage. Based on our analysis, we suggest a recent and species-specific shift in the region's mutation pattern as the cause of its differing evolution in humans and chimpanzees.  相似文献   

5.
The toxicity and mutagenicity (including the mutation spectrum induced) of dacarbazine, a methylating cytostatic drug, was examined in CHO cells expressing different levels of the repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Expression of low or high levels of a transfected human MGMT gene under the control of the metallothionein promoter protected the cells against dacarbazine-induced toxicity and mutagenesis. In the absence of MGMT expression, the mutation spectrum in the HPRT locus was dominated by GC-->AT transitions (mostly found at 5'Pu-G sequences), while there were also a few AT-->GC transitions. Expression MGMT was associated with a substantial decrease of GC-->AT mutations, suggesting that these mutations arose primarily via O(6)-methylguanine. These data illustrate the important role of the latter lesion in the drug's mutagenic and cytotoxic activity.  相似文献   

6.
GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.  相似文献   

7.
Vanishing GC-rich isochores in mammalian genomes   总被引:25,自引:0,他引:25  
Duret L  Semon M  Piganeau G  Mouchiroud D  Galtier N 《Genetics》2002,162(4):1837-1847
To understand the origin and evolution of isochores-the peculiar spatial distribution of GC content within mammalian genomes-we analyzed the synonymous substitution pattern in coding sequences from closely related species in different mammalian orders. In primate and cetartiodactyls, GC-rich genes are undergoing a large excess of GC --> AT substitutions over AT --> GC substitutions: GC-rich isochores are slowly disappearing from the genome of these two mammalian orders. In rodents, our analyses suggest both a decrease in GC content of GC-rich isochores and an increase in GC-poor isochores, but more data will be necessary to assess the significance of this pattern. These observations question the conclusions of previous works that assumed that base composition was at equilibrium. Analysis of allele frequency in human polymorphism data, however, confirmed that in the GC-rich parts of the genome, GC alleles have a higher probability of fixation than AT alleles. This fixation bias appears not strong enough to overcome the large excess of GC --> AT mutations. Thus, whatever the evolutionary force (neutral or selective) at the origin of GC-rich isochores, this force is no longer effective in mammals. We propose a model based on the biased gene conversion hypothesis that accounts for the origin of GC-rich isochores in the ancestral amniote genome and for their decline in present-day mammals.  相似文献   

8.
Interspersed repeats have emerged as a valuable tool for studying neutral patterns of molecular evolution. Here we analyze variation in the rate and pattern of nucleotide substitution across all autosomes in the chicken genome by comparing the present-day CR1 repeat sequences with their ancestral copies and reconstructing nucleotide substitutions with a maximum likelihood model. The results shed light on the origin and evolution of large-scale heterogeneity in GC content found in the genomes of birds and mammals--the isochore structure. In contrast to mammals, where GC content is becoming homogenized, heterogeneity in GC content is being reinforced in the chicken genome. This is also supported by patterns of substitution inferred from alignments of introns in chicken, turkey, and quail. Analysis of individual substitution frequencies is consistent with the biased gene conversion (BGC) model of isochore evolution, and it is likely that patterns of evolution in the chicken genome closely resemble those in the ancestral amniote genome, when it is inferred that isochores originated. Microchromosomes and distal regions of macrochromosomes are found to have elevated substitution rates and a more GC-biased pattern of nucleotide substitution. This can largely be accounted for by a strong correlation between GC content and the rate and pattern of substitution. The results suggest that an interaction between increased mutability at CpG motifs and fixation biases due to BGC could explain increased levels of divergence in GC-rich regions.  相似文献   

9.
Lercher MJ  Hurst LD 《Gene》2002,300(1-2):53-58
One of the most abiding controversies in evolutionary biology concerns the role of neutral processes in molecular evolution. A main focus of the debate has been the evolution of isochores, the strong and systematic variation of base composition in mammalian genomes. One set of hypotheses argue that regions of similar GC are owing to localised mutational biases coupled with neutral evolution. The alternatives point to either selection or biased gene conversion as mechanisms to preferentially remove A or T bases, favouring G and C instead. Using a novel method, we compare models including such fixation biases to models based on mutation bias alone, under the assumption that non-coding, non-repetitive human DNA is at compositional equilibrium. While failing to fully explain the allele frequency distributions of recent single nucleotide polymorphism data, we show that the data are best fitted if the mutation bias is assumed to be constant across the genome, while fixation bias varies with GC content. We also attempt to estimate the strength of fixation bias, which increases linearly with increasing GC. Our approximation suggests that this force exists within the necessary parameter range: it is not so weak as to be drowned by random drift, but not so strong as to lead to exclusive use of G and C alone. Together these results demonstrate that mutation bias fails to explain the evolution of isochores, and suggest that either selection or biased gene conversion are involved.  相似文献   

10.
Analysis of the genome-wide patterns of single-nucleotide substitution reveals that the human GC content structure is out of equilibrium. The substitutions are decreasing the overall GC content (GC), at the same time making its range narrower. Investigation of single-nucleotide polymorphisms (SNPs) revealed that presently the decrease in GC content is due to a uniform mutational preference for A:T pairs, while its projected range is due to a variability in the fixation preference for G:C pairs. However, it is important to determine whether lessons learned about evolutionary processes operating at the present time (that is reflected in the SNP data) can be extended back into the evolutionary past. We describe here a new approach to this problem that utilizes the juxtaposition of forward and reverse substitution rates to determine the relative importance of variability in mutation rates and fixation probabilities in shaping long-term substitutional patterns. We use this approach to demonstrate that the forces shaping GC content structure over the recent past (since the appearance of the SNPs) extend all the way back to the mammalian radiation ∼90 million years ago. In addition, we find a small but significant effect that has not been detected in the SNP data—relatively high rates of C:G→A:T germline mutation in low-GC regions of the genome. Reviewing Editor: Dr. Nicolas Galfier An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号