首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Marine catenulid platyhelminths of the genus Paracatenula lack mouth, pharynx and gut. They live in a symbiosis with intracellular bacteria which are restricted to the body region posterior to the brain. The symbiont-housing cells (bacteriocytes) collectively form the trophosome tissue, which functionally replaces the digestive tract. It constitutes the largest part of the body and is the most important synapomorphy of this group. While some other features of the Paracatenula anatomy have already been analyzed, an in-depth analysis of the trophosome region was missing. Here, we identify and characterize the composition of the trophosome and its surrounding tissue by analyzing series of ultra-thin cross-sections of the species Paracatenula cf. polyhymnia. For the first time, a protonephridium is detected in a Paracatenula species, but it is morphologically reduced and most likely not functional. Cells containing needle-like inclusions in the reference species Paracatenula polyhymnia Sterrer and Rieger, 1974 were thought to be sperm, and the inclusions interpreted as the sperm nucleus. Our analysis of similar cells and their inclusions by EDX and Raman microspectroscopy documents an inorganic spicule consisting of a unique magnesium–phosphate compound. Furthermore, we identify the neoblast stem cells located underneath the epidermis. Except for the modifications due to the symbiotic lifestyle and the enigmatic spicule cells, the organization of Paracatenula cf. polyhymnia conforms to that of the Catenulida in all studied aspects. Therefore, this species represents an excellent model system for further studies of host adaptation to an obligate symbiotic lifestyle.  相似文献   

2.
Coryneform bacteria were found associated with the nitrogen fixing blue-green alga, Anabaena azollae in the leaf cavity of Azolla caroliniana. Plate counts indicated ca. 7,400±1,900 bacterial cells per mature leaf cavity or approximately 1 bacterial cell for every algal cell. No other type of bacterium was found in these cavities.  相似文献   

3.
Summary Two types of filamentous mutants were derived from the unicellular blue-green alga,Agmenellum, by brief exposure to nitrosoguanidine. The parent exhibits constrictive division analogous to that of the enteric bacteria. The septate mutant exhibits septal division which is almost identical to that observed in all filamentous blue-green algae thus far described. In this mutant, the two outer wall layers fail to invaginate, leaving the daughter cells connected. The coenocytic filamentous mutant divides sporadically by both of these methods. The nuclear region of this mutant appears continuous throughout the length of the filament. It is suggested that the non-septate mutant is impaired in the coordination of cytological events leading to cell division.  相似文献   

4.
Electron microscopic studies of Sphagnum lindbergii (Schimp.) and S. riparium (Ångstr.) have revealed the presence of intracellular organisms such as blue-green algae, green algae, bacteria and fungi. Nitrogenase activities of these Sphagnum mosses were found to be related mainly to the presence of intracellular Nostoc filaments. The appearance of nitrogen-fixing blue-green algae within bryophytes is thus not restricted to liverworts. The association is likely to be of ecological importance as it seems to occur in very acid habitats generally lacking blue-green algae. Possible interrelations between the moss, the blue-green algae and different types of bacteria are discussed.  相似文献   

5.
The fine structure of the trophozoite of Acanthamoeba palestinensis with a special emphasis on the Golgi complex, microbodies, and mitochondria has been examined. Golgi complexes are distributed throughout the cytoplasm but are most abundant in the perinuclear region. Usually two Goigi complexes are found in the same plane on opposite sides of the nucleus. One of them appears to be in an intimate association with the nuclear membrane. The region of contact contains compact cisternae, vesicles of various sizes, as well as granular and amorphous electron-dense material. Structural changes in the nuclear envelope are also observed in this area. A structure consisting of a Golgi complex and electron-dense microtubule organizing center, comparable to the centrosphere of other Acanthamoeba species, has been observed. Microbodies, surrounded by a single unit membrane and containing a granular matrix and tubular inclusions, are scattered throughout the cytoplasm. These organelles, circular (~1 μm in diameter) or ovoidal (~1 μm in length and ~0.5 μm in width) in section, have often an irregular outline. These microbodies are probably the morphological equivalent of peroxisomes and glyoxysomes. Most mitochondria show a typical structure including tubular cristae and intracristal inclusions. Occasionally mitochondria with two apposed double membranes running through the midline are found. Such atypical cristae have never been reported in small amoebae before.  相似文献   

6.
Grazing of fluorescent latex beads, bacteria, and various species of phytoplankton by Poterioochromonas malhamensis (Pringsheim) Peterfi (about 8.0 μm in diameter) was surveyed. The alga ingested fluorescent beads and various live or killed and nomnotile or motile organisms including bacteria, blue-green algae, green algae, diatoms, and chrysomonads. The size range of grazed prey was from 0.1 to 6.0 μm for latex beads and from 1.0 μm (bacteria) to about 21 μm (Carteria inverse) for organisms. As many as 17 latex beads (2.0 μm) or more than 10 Microcystis cells (5–6 μm) were ingested by a single P. malhamensis cell. Following such grazing, the cell increased in volume by up to about 30-fold. The range of cell volume of ingested prey was from 0.52 μm3 (bacteria) to about 3178 μm3(Carteria inversa). This study demonstrates for the first time that P. malhamensis is capable of grazing algae 2–3 times larger in diameter than its own cell and of grazing intact motile algae. Poterioochromonas malhamensis is an omnivorous grazer. Food vacuole formation and digestion processes were examined. The membrane that was derived from the plasma membrane and surrounded the prey disappeared sometime after ingestion. The food vacuole was then formed by successive fusion of numerous homogeneous vesicles accumulated around the prey. The prey was enclosed in a single membrane-bound food vacuole and then digested.  相似文献   

7.
广东省水库的蓝藻污染状况与水质评价   总被引:16,自引:1,他引:15  
于2000年的丰水期和枯水期对广东省19个大中型水库的浮游植物状况进行了调查,并根据浮游植物群落结构、多样性指数、蓝藻污染状况和营养状态指数对水库的水质进行了分析。结果表明,大部分水库为蓝藻型水体,优势种类主要是能产生毒素的微囊藻类,而且蓝藻种类数和细胞密度与水库水质密切相关。蓝藻细胞密度和百分比分别为0.1×104-6728.4×104 cellsL-1和0.53%-99.2%。大部分水库受到了一定程度的污染,属于中营养型;东江流域的新丰江水库和白盘珠水库水质优良,为贫营养型;而位于经济较发达的沿海地区的鹤地水库、石岩水库和契爷石水库已受到严重污染。东江流域和北江流域水库水质普遍较好,而粤西沿海地区和珠江三角洲地区水库则污染较为严重。  相似文献   

8.
Summary a)Nitrogen fixation in rice fields. Nitrogen-fixing blue-green algae grow abundantly in tropical regions and are particularly common in paddy fields. Their possible role in the nitrogen accumulation of soil has been studied. The most vigorous nitrogen-fixing blue-green algae have been assessed for use as green manure in rice fields and favorable effects have been reported in India and other countries. b)Nitrogen fixation by algae in water. The planktonic blue-green algae occur abundantly at certain time of the year in sea water and lake water, and some of them are known to be nitrogen fixers. Certain Japanese species of blue-green algae can withstand high temperatures including ten nitrogen-fixing species from hot-spring waters. c)Nitrogen fixation by symbiotic blue-green algae. Certain species of blue-green algae form associations with other organisms such as fungi, liverworts, ferns and seed plants. The relationship between these two organisms is on one occasion commensal and on others symbiotic. Certain symbiotic blue-green algae are provided with the ability to fix the atmospheric nitrogen.  相似文献   

9.
We describe the ultrastructure of type-I salivary-gland acini in two argasid and two ixodid species. The basic cell types in the agranular or type-I acini, and their associations, are very similar in argasids and ixodids; therefore, we propose an anatomical nomenclature for cells in the type-I acinus based on the adult ixodidsAmblyomma americanum andDermacentor variabilis, and the argasid adultArgas (Persicargas) arboreus and on nymphalOrnithodoros moubata. Four cell types were present in all specimens: one central lamellate cell, a variable number of peripheral lamellate cells, a variable number of peritubular cells depending on the species, and one circumlumenal cell. The lamellate cells had infolded basal plasma membranes that presented an amplified surface area to the hemolymph. These cells most likely secreted the fluid involved in water vapor uptake by ticks. ForAmblyomma americanum females, abundant K+-dependent, ouabain-sensitive Na+, K+-ATPase complexes were located on the infolded basal plasma membranes of the lamellate cells. Apical membranes of the lamellate cells, and plasma membranes of other cell types in the acinus had little or no evidence of Na+, K+-ATPase activity. Only the central lamellate cell extended from the hemolymph of the acinus to its lumen; peripheral cells did not contact the lumen. Except when the ticks were rehydrating, lipid inclusions were common features in the lamellate cells of the ixodids. Lipid inclusions were not seen in argasid type I acini; however, glycogen deposits were common. To determine if acinar cells respond to the changing hydration state of the tick, unfed femaleA. americanum were subjected to dehydration/rehydrating conditions. During rehydration, mitochondria in the lamellate cells changed from a matrix of medium electron-density and intermembrane space (orthodox configuration) to a matrix of greater density and larger intermembrane space (condensed configuration). The orthodox configuration was consistently observed in control and dehydrating ticks. The condensed configuration was the norm for mitochondria in lamellate cells of rehydrating ticks. Lipid inclusions were depleted in the rehydrating ticks compared to control or dehydrating ticks. Acini appeared to be reverting to the control or desiccated state when ticks were returned to low humidity, suggesting that these changes were cyclical. Nymphs ofO. moubata subjected to the same dehydration/rehydrating conditions showed no obvious ultrastructural changes.  相似文献   

10.
Sulfide-oxidizing bacteria of the genus Beggiatoa are known to accumulate phosphate intracellularly as polyphosphate but little is known about the structure and properties of these inclusions. Application of different staining techniques revealed the presence of unusually large polyphosphate inclusions in the marine Beggiatoa strain 35Flor. The inclusions showed a co-occurrence of polyphosphate, calcium and magnesium when analyzed by scanning electron microscopy and energy dispersive X-ray analysis. Similar to polyphosphate-enriched acidocalcisomes of prokaryotes and eukaryotes, the polyphosphate inclusions in Beggiatoa strain 35Flor are enclosed by a lipid layer and store cations. However, they are not notably acidic. 16S rRNA gene sequence-based phylogenetic reconstruction showed an affiliation of Beggiatoa strain 35Flor to a monophyletic branch, comprising other narrow vacuolated and non-vacuolated Beggiatoa species. The polyphosphate inclusions represent a new type of membrane surrounded storage compartment within the genus Beggiatoa, distinct from the mostly nitrate-storing vacuoles known from other marine sulfide-oxidizing bacteria of the family Beggiatoaceae.  相似文献   

11.
The morphology of a new species of pelobionts Pelomyxa flava was studied by light and electron microscopy. The envelopes of P. flava are consist of a plasma membrane with a thick layer of weakly structured glycocalyx on its outer surface. Numerous flagella are often located at the apices of short conical pseudopodia. Kinetosomes of flagella reach length of 0.9 μm and are hollow with a pronounced central filament. The rootlet system is represented by three groups of microtubules: the radial, basal, and the microtubules of lateral root. The transitory zone is short and does not reach beyond the level of the cell surface; the axoneme is characterized by an unstable set of microtubules. Trophic stages of the P. flava life cycle are represented by binuclear cells; plasmotomy is performed at the tetranuclear stage. Nuclei have a granular structure. Fibrillar nuclear bodies are revealed in the karyoplasm. The nuclear envelope has a complex organization; on its surface, the outer membrane has a layer of electron-dense material that contacts with short microtubules located single-row at the surface of the nuclear envelope. Vesicles and cisterns of endoplasmic reticulum are located away from microtubules and are derivatives of the nuclear envelope. In the P. flava endoplasm, the presence of structural and digestive vacuoles and glycogen granules was found. Three types of prokaryotic cytobionts were revealed. Large multimembranous organelles reaching 5 μm in diameter were described for the first time. Peculiarities of the morphology and biology of P. flava compared to the previously studied Pelomyxa species are discussed.  相似文献   

12.
The algal floras of two limestone streams and two calcareous Tintenstrichen are described and compared. The most important factor governing the distribution and abundance of species was the availability of water. Permanently wet stands, dominated by filamentous blue-green algae (Schizothrix calcicola and Phormidium incrustatum) had a greater species diversity than stands subject to frequent drying which were dominated by coccoid blue-green algae (Gloeocapsa spp.).

Significant correlations were found between S. calcicola and water pH (+ve), total species numbers and pH (+ve), filamentous blue-green algae and aufwuchs thickness (+ve) and Calothrix numbers and rock mass colonized (+ve).

The algal flora of the Tintenstrichen and the streams differed, although both developed upon the same limestone formation. The results are discussed with reference to previous work, substratum stability, aufwuchs structure, water chemistry, light and temperature.  相似文献   

13.
Summary The ultrastructure of the mid-gut cells of aged female Nasonia vitripennis is described. The mid-gut is a shrunken and distorted organ in the aged animal. The individual cells are highly disorganised and the organelle components are altered. The small lipid droplets formed in the apical cell region do not coalesce to form the large central lipid inclusions characteristic of the young animal. The rough endoplasmic reticulum is reduced and some of the mitochondria enlarge. The mid- and apical cell regions also contain large numbers of cytolysosomes. The basal cell region is essentially unchanged, but the channels formed by the infolded basal plasma membranes are dilated. The changes observed are discussed in relation to previous observations on other insect species.We are indebted to Professor E.W. Knight-Jones in whose Department this work was carried out, and to the Science Research Council for financial support to one of us (I.D.)  相似文献   

14.
All three species of the marine blue-green alga Trichodesmium collected in the Sargasso and Caribbean seas were found to possess gas vacuoles. The constituent gas vesicles were much stronger than those found in any freshwater blue-green alga, the mean critical collapse pressures being 12 bars in T. erythraeum, 34 bars in T. contortum and 37 bars in T. thiebautii. This great strength is obviously an adaptation to the hydrostatic pressures at the depths to which these organisms occur in the ocean. In each case the gas vesicles are far too strong to be collapsed by rising cell turgor pressure, though gas-vacuolation could be slowly regulated by the differential growth of gas vesicles and cells. Since the vesicles are of a similar shape and size to those in other species, the vesicle wall material must be stronger. The majority of Trichodesmium colonies collected were positively buoyant, and in all cases tested the buoyancy was dependent on the presence of gas vacuoles. The buoyancy is important in increasing the residence time of these slowly growing algae in the euphotic zone and it is responsible for the surface water-blooms which they form.  相似文献   

15.
Intensity, spectral characteristics and localization of the UV-laser (337 nm) induced blue-green and red fluorescence emission of green, etiolated and white primary leaves of wheat seedlings were studied in a combined fluorospectral and fluoromicroscopic investigation. The blue-green fluorescence of the green leaf was characterized by a maximum near 450 nm (blue region) and a shoulder near 530 nm (green region), whereas the red chlorophyll fluorescence exhibited maxima in the near-red (F690) and far-red (F735). The etiolated leaf with some carotenoids and traces of chlorophyll a, in turn, showed a higher intensity of the blue-green fluorescence with a shoulder in the green region and a strong red fluorescence peak near 684 to 690 nm, the far-red chlorophyll fluorescence maximum (F735) was, however, absent. The norfluorazone-treated white leaf, free of chlorophylls and carotenoids, only exhibited blue-green fluorescence of a very high intensity. In green and etiolated leaves the blue-green fluorescence primarily derived from the cell walls of the epidermis and the red fluorescence from the chlorophyll a of the mesophyll cells. In white leaves the blue-green fluorescence emanated from all cell walls of epidermis, mesophyll and leaf vein bundles. The shape and intensity of the blue-green and red fluorescence emission is determined by the reabsorption properties of chlorophylls and carotenoids in the mesophyll, thus giving rise to quite different values of the various fluorescence ratios F450/F690, F450/F530, F450/F735 and F690/F735 in green and etiolated leaves.  相似文献   

16.
Sensitivity of 5 blue-green algae, especially Microcystis aeruginosa, and associated bacteria to 32 antibiotics was determined. A combination of neomycin and dihydrostrcptomycin was the most useful in inhibiting bacterial growth while allowing some algal growth. An axenic culture of M. aeruginosa maintainable for an extended time was not obtained. This and other studies indicate that a blue-green chroococcalcan culture should not be reported to be bacteria-free unless repeated rigorous tests for bacteria prove negative.  相似文献   

17.
Meara stichopi and an undescribed species of Meara, both endosymbiotic in the intestine of aspidochirote holothurians, possess filiform extraepidermal bacteria among the epidermal cilia. Similar bacteria were also observed on one specimen of the free-living species Nemertoderma westbladi. The bacteria are of the gram-negative type, as evident by cell wall structure and results from gramstaining. On a few specimens of M. stichopi, the bacteria were found to carry peculiar distal appendages, or buds, on stalked cup-shaped cell extensions. As the bacteria described here appear to be species specific, they can be used in addition to other features in the often problematic characterization of the nemertodermatid species.  相似文献   

18.
Throughout a long history many filamentous bacteria may have been identified in natural collections as blue-green algae. This problem has been especially acute regarding the thermophilic species of hot springs, especially at the higher temperatures. It is suggested that in the absence of pure cultures, the minimal criteria for distinguishing filamentous bacteria from blue-green algae microscopically should be: (1) observation of the chlorophyll fluorescence with a fluorescent microscope and (2) demonstration of light-dependent 14CO2 fixation autoradiographically. Pure cultures of a number of filamentous thermophiles have been obtained from habitats at temperatures above 60 C. These cultures resemble microscopically the natural material, grow only heterot rophically, and do not contain chlorophyll.  相似文献   

19.
The protein Isw1 of Saccharomyces cerevisiae is an imitation‐switch chromatin‐remodeling factor. We studied the mechanisms of its nuclear import and found that the nuclear localization signal (NLS) mediating the transport of Isw1 into the nucleus is located at the end of the C‐terminus of the protein (aa1079–1105). We show that it is an atypical bipartite signal with an unconventional linker of 19 aa (KRIR X19 KKAK) and the only nuclear targeting signal within the Isw1 molecule. The efficiency of Isw1 nuclear import was found to be modulated by changes to the amino acid composition in the vicinity of the KRIR motif, but not by the linker length. Live‐cell imaging of various karyopherin mutants and in vitro binding assays of Isw1NLS to importin‐α revealed that the nuclear translocation of Isw1 is mediated by the classical import pathway. Analogous motifs to Isw1NLS are highly conserved in Isw1 homologues of other yeast species, and putative bipartite cNLS were identified in silico at the end of the C‐termini of imitation switch (ISWI) proteins from higher eukaryotes. We suggest that the C‐termini of the ISWI family proteins play an important role in their nuclear import.  相似文献   

20.
Methods are described for preparation of pulse-labeled ribonucleic acid (RNA) from the blue-green alga Anacystis nidulans. Synthesis of labeled RNA was found to be in part dependent on concurrent photosynthesis and was inhibited by the antibiotic streptolydigin. Mature 23S ribosomal RNA (rRNA) appeared before mature 16S rRNA. Formation of either molecule was inhibited by chloramphenicol, and RNA species of lesser mobility accumulated. These species may be precursors of the mature forms. Maturation of 16S rRNA was also inhibited by streptolydigin. (The effect of this antibiotic on 23S rRNA maturation was not examined). In many respects, ribosomal RNA synthesis and maturation in this blue-green alga appear to follow the pattern already established for bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号