首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
3.
4.
DNA and histone chromatin modifying enzymes play a crucial role in chromatin remodeling in several biological processes. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a relevant player in the regulation of a broad spectrum of biological processes including development, cellular differentiation, embryonic pluripotency and cancer. Here, we review recent insights on the role of LSD1 activity in chromatin regulatory complexes, its functional role in the epigenetic changes during embryonic development, in the establishment and maintenance of stemness and during cancer progression.  相似文献   

5.
6.
《Epigenetics》2013,8(10):1098-1108
  相似文献   

7.
8.
DNA修复的表观遗传学调控   总被引:1,自引:0,他引:1  
表观遗传学信息的改变是导致人类肿瘤形成的重要因素之一.基因组的稳定性经常会受到DNA损伤的威胁.然而,高度致密的染色质结构却极大地妨碍了DNA修复的进行.因此,真核生物细胞中必须有一个精确的机制来克服染色质这一天然的屏障.其中,组蛋白的共价修饰和ATP-依赖的染色质重塑通过改变染色质的结构,对DNA修复进程起着关键的调控作用.介绍了DNA修复过程中,发生在表观遗传学方面的主要调控过程,特别阐述了在DNA双链断裂损伤应答和修复过程中,组蛋白修饰和染色质重塑方面最新的研究进展,并对今后的发展方向进行了讨论.  相似文献   

9.
Cancer epigenetics: from mechanism to therapy   总被引:2,自引:0,他引:2  
MA Dawson  T Kouzarides 《Cell》2012,150(1):12-27
The epigenetic regulation of DNA-templated processes has been intensely studied over the last 15 years. DNA methylation, histone modification, nucleosome remodeling, and RNA-mediated targeting regulate many biological processes that are fundamental to the genesis of cancer. Here, we present the basic principles behind these epigenetic pathways and highlight the evidence suggesting that their misregulation can culminate in cancer. This information, along with the promising clinical and preclinical results seen with epigenetic drugs against chromatin regulators, signifies that it is time to embrace the central role of epigenetics in cancer.  相似文献   

10.
11.
12.
13.
Changes in the overall structure of chromatin are essential for the proper regulation of cellular processes, including gene activation and silencing, DNA repair, chromosome segregation during mitosis and meiosis, X chromosome inactivation in female mammals, and chromatin compaction during apoptosis. Such alterations of the chromatin template occur through at least 3 interrelated mechanisms: post-translational modifications of histones, ATP-dependent chromatin remodeling, and the incorporation (or replacement) of specialized histone variants into chromatin. Of these mechanisms, the exchange of variants into and out of chromatin is the least well understood. However, the exchange of conventional histones for variant histones has distinct and profound consequences within the cell. This review focuses on the growing number of mammalian histone variants, their particular biological functions and unique features, and how they may affect the structure of the nucleosome. We propose that a given nucleosome might not consist of heterotypic variants, but rather, that only specific histone variants come together to form a homotypic nucleosome, a hypothesis that we refer to as the nucleosome code. Such nucleosomes might in turn participate in marking specific chromatin domains that may contribute to epigenetic inheritance.  相似文献   

14.
15.
16.
17.
18.
真核生物基因表达受到染色质结构的调控,组蛋白与DNA的共价修饰构成表观遗传标签,并在植物胁迫应答如防御病原菌侵染过程中起重要作用.病原菌侵染可引起基因组整体DNA甲基化模式变化及胁迫应答基因的位点特异性去甲基化,导致植物抗性基因表达上调或下调,并进一步调控植物对病原菌的胁迫应答;组蛋白去乙酰化酶HDAC通过茉莉酸途径增强植物对病原菌的胁迫应答;此外,染色质重塑复合物Swr1复合体通过识别DNA基元和组蛋白乙酰化修饰状态靶向基因启动子,负调控SA敏感基因.该文从DNA甲基化、组蛋白乙酰化、甲基化修饰,染色质重塑等方面着重阐述植物与病原菌互作过程中发生的主要事件的分子基础及其研究进展.  相似文献   

19.
Many phenotypic changes of eukaryotic cells due to changes in gene expression depend on alterations in chromatin structure. Processes involved in the alteration of chromatin are diverse and include post-translational modifications of histone proteins, incorporation of specific histone variants, methylation of DNA and ATP-dependent chromatin remodeling. Interconnected with these processes are the localization of chromatin domains within the nuclear architecture and the appearance of various classes of noncoding regulatory RNAs. Recent experiments underscore the role of these processes in influencing diverse biological functions. However, the evidence to date implies the importance of an interplay of all these chromatin-changing functions, generating an epigenetic regulatory circuit that is still not well understood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号