首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
小麦线粒体DNA的高效提取方法   总被引:15,自引:0,他引:15  
李文强  张改生  汪奎  牛娜  潘栋梁 《遗传》2007,29(6):771-775
以小麦黄化苗为材料, 通过简单差速离心、DNaseⅠ处理得到无核DNA杂质的线粒体, 用SDS和蛋白酶K裂解线粒体, 经酚/氯仿抽提除去蛋白, 并用RNase A消化而得到单纯线粒体DNA(mtDNA)。对所提取的mtDNA进行紫外吸收光度分析, A260/A280 平均为1.92, A260/A230 平均为2.09, 平均每克黄化苗可提取mtDNA 26.85 mg; 并对mtDNA进行琼脂糖凝胶电泳和RAPD扩增, 均得到清晰的电泳图谱。结果表明: 此提取方法得到的mtDNA, 不但产率高、结构完整, 而且能有效去除核DNA、RNA和蛋白质等杂质, 获得高质量的mtDNA用于PCR反应和各种遗传学分析。研究还发现, 通过调整线粒体裂解温度(先50℃裂解1 h, 再37℃裂解1 h), 亦可大幅度提高mtDNA的产率。  相似文献   

2.
一种改进的动物线粒体DNA提取方法   总被引:80,自引:11,他引:80       下载免费PDF全文
王文  施立明 《动物学研究》1993,14(2):197-198
线粒体DNA(mtDNA)已被广泛用于动物群体遗传学和进化生物学的研究,并取得了许多有意义的结果。有效的mtDNA提取方法无疑是开展这方面研究的前提。关于动物mtDNA的提取方法,国内外已有不少报导。概括起来,可分为:1)氯化铯超速离心法,2)柱层析法,3)DNase法,4)碱变性法。本文报道了一种改进的碱变性提取法,与其它方法相比,具有应用范围广、简便、经济等优点。  相似文献   

3.
大白菜线粒体DNA有效、快速提取方法   总被引:6,自引:0,他引:6  
目的:建立一种有效、快捷的大白菜线粒体DNA(mtDNA)提取方法。方法:采用差速离心和蔗糖衬垫相结合的方法先从大白菜胞质雄性不育系及保持系叶片中分离出线粒体,然后用SDS—蛋白酶K裂解法提取mtDNA。结果:琼脂糖凝胶电泳表明,采用该方法提取的mtDNA片段大小在30~45kb之间,电泳条带清晰,无明显降解发生;以提取的mtDNA为模板进行RAPD反应,不育系和保持系均扩增出较多的条带,而且呈现出丰富的多态性,大小分布在500bp-3000bp之间,且条带清晰,没有脱尾现象。结论:该方法提取mtDNA,省时、省钱,对实验设备要求较低,而且分离出的mtDNA质量较高,能满足后续分子生物学研究工作需要。  相似文献   

4.
线粒体DNA提取方法的比较   总被引:6,自引:0,他引:6  
目的:将提取线粒体DNA的碱变性法、Triton法、改进高盐沉淀法加以比较,以得到最方便快速提取线粒体DNA的方法。方法:分离Wistar大鼠小肠上皮细胞,用3种方法提取线粒体DNA,紫外分光光度法定量。用琼脂糖凝胶电泳和线粒体ATPase 8亚基基因PCR扩增产物鉴定所提取的线粒体DNA。结果:改进高盐沉淀法线粒体DNA量最多,Triton法最少。OD260/OD280均在1.78-l.85间。将改进高盐沉淀法提取线粒体DNA用于PCR扩增,测定出了线粒体DNA ATPase 8亚基基因序列。结论:改进高盐沉淀法提取线粒体DNA具有操作简单,产量多的优点,该法所提取mtDNA可用于mtDNA测序。  相似文献   

5.
目的:对2种常用的线粒体DNA提取方法进行比较,分析提取物中核DNA的存在情况,同时建立新检测方法降低线粒体假基因干扰。方法:以仅在核DNA中存在的基因β-actin作为核DNA存在的标定基因,通过PCR方法扩增线粒体DNA上的一段基因MTND5-2,并以β-actin做参比,比较常用的2种提取线粒体DNA方法的优劣,即碱法Ⅰ(先提取完整线粒体后从中获得线粒体DNA)和碱法Ⅱ(根据线粒体DNA与核DNA的结构差异,从中获得双链环状的线粒体DNA)。结果:2种线粒体DNA提取方法并不能获得仅含线粒体DNA的纯提取物,碱法Ⅰ获得的线粒体DNA纯度相对较高;以碱法Ⅰ提取物为模板进行PCR,可获得更多较纯的线粒体目的基因。结论:碱法Ⅰ较碱法Ⅱ可获得更纯的线粒体来源的目的基因;新建方法可获得较纯的线粒体基因,且是一种简单、方便、经济的方法。  相似文献   

6.
一种改进的禽类线粒体DNA提取方法   总被引:6,自引:0,他引:6  
介绍一种碱变性法从禽类脏器中提取大量线粒体DNA,比较了从不同脏器提取mtDNA的难易程度和得率。结果表明:肝脏、脾脏的匀桨操作易于心脏,且肝脏的得率高于心脏,更高于脾脏;同时对影响mtDNA产量和质量的匀桨速度和次数,差速离心速度,溶液Ⅱ中SDS含量及溶液pH值等因素进行了初步分析和探讨。在借鉴前人研究基础上对禽类脏器mtDNA提取方法上进行了改进和优化,建立了一种从禽类脏器中有效制备mtDNA的方法。结果表明,这种方法得到的mtDNA可以满足限制性酶切实验的要求。  相似文献   

7.
一种棉花线粒体DNA的提取方法   总被引:2,自引:0,他引:2  
线粒体是重要的细胞器,它有自身的基因组。其基因组DNA与细胞核基因组DNA相比,含量较低。棉花当中富含棉酚、丹宁等物质,这对提取DNA有很大的影响。因此我们根据棉花自身的特点,找到了一种提取棉花线粒体DNA经济有效的方法,其质量可以满足限制性酶切、PCR、分子杂交等实验的要求。  相似文献   

8.
ASimpleProcedureforPreparationmtDNAinYeastJinJianlingGaoDongSunZhongdong(MicrobiologyDepartment,ShandongUniversity,Jinan250100)目前,制备酵母mtDNA的常用方法大致有两类:一是先提取混合DNA(核DNA+mtDNA),再通过CsCI密度梯度离心或柱层析法分离纯化mtDNA(’,’,”’;二是先通过蔗糖不连续梯度超离心法分离纯化线粒体,再从线粒体中提取mtDNA”’。这些方法虽然能够得到纯度较高的mtDNA,但超离心法需要配套设备(超速离心机等),柱层析法对样品的回收浓缩比较复杂。本文报道的制备mtDNA的方法,不需…  相似文献   

9.
线粒体DNA及其表达的研究进展   总被引:8,自引:0,他引:8  
孟紫强  耿红  张波 《生命的化学》2001,21(6):500-502
线粒体属于半自主性细胞器 ,含有环状DNA ,能进行自我复制 (重组和修复机制也包括在内 )。但线粒体DNA(mtDNA)的复制仍受细胞核的控制 ,因为不仅构成线粒体的蛋白质几乎都受核基因编码、在细胞质中合成 ,而且与mtDNA有关的特定蛋白质(如DNA聚合酶、重组与修复所需的酶、RNA聚合酶、RNA加工酶 )也都是由核基因编码的。mtDNA的复制、转录、翻译及蛋白质的输入有其特殊规律 ,阐明线粒体的分子遗传规律既有助于理解线粒体在凋亡或程序性细胞死亡中发挥的作用 ,因而可更深入地对发育生物学、癌症、老化及机体死亡…  相似文献   

10.
直接从鱼类组织提取线粒体DNA和先提取基因组DNA再用相应引物PCR扩增所需mtDNA某一区域序列片段是获取鱼类mtDNA切实可行的两种方法。对这两种方法在使用过程中的注意事项、各自的优缺点及应用范围进行了较为细致的比较,为更好地利用mtDNA这一重要分子标记研究鱼类mtDNA的遗传多态提供参考。  相似文献   

11.
Mitochondrial DNA damage and the aging process: facts and imaginations   总被引:5,自引:0,他引:5  
  相似文献   

12.
The small, maternally inherited mitochondrial DNA (mtDNA) has turned out to be a hotbed of pathogenic mutations: 15 years into the era of ‘mitochondrial medicine’, over 150 pathogenic point mutations and countless rearrangements have been associated with a variety of multisystemic or tissue-specific human diseases. MtDNA-related disorders can be divided into two major groups: those due to mutations in genes affecting mitochondrial protein synthesis in toto and those due to mutations in specific protein-coding genes. Here we review the mitochondrial genetics and the clinical features of the mtDNA-related diseases.  相似文献   

13.
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.  相似文献   

14.
Mitochondrial DNA Repair Pathways   总被引:5,自引:0,他引:5  
It has long been held that there is no DNA repair in mitochondria. Early observations suggestedthat the reason for the observed accumulation of DNA damage in mitochondrial DNA is thatDNA lesions are not removed. This is in contrast to the very efficient repair that is seen inthe nuclear DNA. Mitochondrial DNA does not code for any DNA repair proteins, but it hasbeen observed that a number of repair factors can be found in mitochondrial extracts. Mostof these participate in the base excision DNA repair pathway which is responsible for theremoval of simple lesions in DNA. Recent work has shown that there is efficient base excisionrepair in mammalian mitochondria and there are also indications of the presence of morecomplex repair processes. Thus, an active field of mitochondrial DNA repair is emerging. Anunderstanding of the DNA repair processes in mammalian mitochondria is an important currentchallenge and it is likely to lead to clarification of the etiology of the common mutations anddeletions that are found in mitochondria, and which are thought to cause various humandisorders and to play a role in the aging phenotype.  相似文献   

15.
Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ0 phenotype.  相似文献   

16.
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.  相似文献   

17.
Mitochondrial DNA disorders are an important cause of neurological disease, yet despite our awareness of the importance of these conditions, relatively little is known about the neuropathology of these disorders and even less about the mechanisms involved in neuronal dysfunction and death. In this review we detail important features from neuropathological studies available and highlight deficiencies that are currently limiting our understanding of mitochondrial DNA disease. We also discuss possible future approaches that might resolve some of these outstanding issues. Further study of these disorders is critical because mitochondria play a central role in neuronal survival and it is likely that an understanding of the mechanisms involved in neuronal dysfunction and cell death in mitochondrial DNA disease may have implications for other neurodegenerative diseases.  相似文献   

18.
Physarum polycephalum. The conformation of Physarum mtDNA is currently thought to be circular. The inheritance of its mtDNA depends on the multiallelic mating type loci, matA. In a cross with ordinary matA combinations, the strain that has the higher matA status transmits its mtDNA to the progeny (uniparental inheritance). The mF plasmid promotes the fusion of mitochondria in the zygote and during sporulation. When it exists in a strain with a lower status matA, the mF plasmid overcomes the force of uniparental inheritance and is preferentially transmitted to the progeny via mitochondrial fusion. Moreover, the conformation of mtDNA is changed from circular to linear by recombination with the mF plasmid. Since biparental inheritance usually occurs in a cross involving a combination of matA1 and matA15, two types of inheritance of Physarum mtDNA exist. Considering the existence of the mF plasmid, there are four patterns of cytoplasmic inheritance in P. polycephalum: 1) uniparental inheritance of mtDNA, 2) uniparental inheritance of mtDNA and preferential transmission of the mF plasmid, 3) biparental inheritance of mtDNA, and 4) biparental inheritance of mtDNA and the mF plasmid. This article describes the events involved in each pattern. Finally, we discuss a hypothetical mechanism for mitochondrial fusion. The essential protein may be the ORF640 protein encoded in the mF plasmid. Received 8 March 2000/ Accepted in revised form 23 March 2000  相似文献   

19.
Zhe Chen  Fan Zhang  Hong Xu 《遗传学报》2019,46(4):201-212
Mutations that disrupt the mitochondrial genome cause a number of human diseases whose phenotypic presentation varies widely among tissues and individuals. This variability owes in part to the unconventional genetics of mitochondrial DNA(mtDNA), which includes polyploidy, maternal inheritance and dependence on nuclear-encoded factors. The recent development of genetic tools for manipulating mitochondrial genome in Drosophila melanogaster renders this powerful model organism an attractive alternative to mammalian systems for understanding mtDNA-related diseases. In this review, we summarize mtDNA genetics and human mtDNA-related diseases. We highlight existing Drosophila models of mtDNA mutations and discuss their potential use in advancing our knowledge of mitochondrial biology and in modeling human mitochondrial disorders. We also discuss the potential and present challenges of gene therapy for the future treatment of mtDNA diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号