首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Rhodanese inactivation by 2,4,6-trinitrobenzenesulphonate, in the presence of n-butylamine in the reaction medium, has been studied by a kinetic analysis of the data, based on the assumption that enzyme inactivation is brought about by direct reaction of this with the modifying agent. 2. Initial reaction rates for rhodanese activity loss were determined by a mathematical analysis of the first three recorded values of rhodanese residual activity. 3. It was found that fractional rhodanese activity values, at infinite reaction time with 2,4,6-trinitrobenzenesulphonate (end-point values), were significantly lower than the values calculated on the assumption of rhodanese inactivation being entirely due to direct trinitrophenylation of enzyme protein. 4. Also, initial enzyme inactivation values were higher in the presence, rather than in the absence, of n-butylamine. 5. These results indicate that 2,4,6-trinitrobenzenesulphonate-induced rhodanese inactivation, in the presence of n-butylamine in the reaction medium, is due to the generation of a highly reactive, unstable intermediate, probably a free radical species.  相似文献   

2.
Metabolism of hydrogen cyanide by higher plants   总被引:13,自引:5,他引:8       下载免费PDF全文
Miller JM  Conn EE 《Plant physiology》1980,65(6):1199-1202
A survey has been made of the occurrence and distribution of three enzymes which metabolize cyanide in a variety of higher plants including both cyanogenic and non-cyanogenic species. The enzymes investigated were β-cyanoalanine synthase, rhodanese and formamide hydrolyase. β-Cyanoalanine synthase was found to be present in every higher plant tested whereas rhodanese was found to occur far less commonly in plants. Formamide hydrolyase activity was not detected in any of the higher plants tested.  相似文献   

3.
The initial steps of heat-induced inactivation and aggregation of the enzyme rhodanese have been studied and found to involve the early formation of modified but catalytically active conformations. These intermediates readily form active dimers or small oligomers, as evident from there being only a small increase in light scattering and an increase in fluorescence energy homotransfer from rhodanese labeled with fluorescein. These species are probably not the domain-unfolded form, as they show activity and increased protection of hydrophobic surfaces. Cross-linking with glutaraldehyde and fractionation by gel filtration show the predominant formation of dimer during heat incubation. Comparison between the rates of aggregate formation at 50 degrees C after preincubation at 25 or 40 degrees C gives evidence of product-precursor relationships, and it shows that these dimeric or small oligomeric species are the basis of the irreversible aggregation. The thermally induced species is recognized by and binds to the chaperonin GroEL. The unfoldase activity of GroEL subsequently unfolds rhodanese to produce an inactive conformation and forms a stable, reactivable complex. The release of 80% active rhodanese upon addition of GroES and ATP indicates that the thermal incubation induces an alteration in conformation, rather than any covalent modification, which would lead to formation of irreversibly inactive species. Once oligomeric species are formed from the intermediates, GroEL cannot recognize them. Based on these observations, a model is proposed for rhodanese aggregation that can explain the paradoxical effect in which rhodanese aggregation is reduced at higher protein concentration.  相似文献   

4.
Ming-Yao Chew 《Phytochemistry》1973,12(10):2365-2367
Rhodanese activity was detected in crude leaf extracts of 12 randomly selected plant species consisting of 9 non-cyanophoric and 3 cyanophoric species. In each case, the enzyme exhibited high activity at pH 10·4 and 55°. There appeared to be no correlation between rhodanese activity and the cyanophoric nature of the plant.  相似文献   

5.
Expression of cloned bovine adrenal rhodanese   总被引:2,自引:0,他引:2  
A cDNA for the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) has been cloned from a bovine adrenal library. An initiator methionine codon precedes the amino-terminal amino acid found in the isolated protein. Rhodanese is synthesized in the cytoplasm and transferred to the mitochondrial matrix. Thus, any amino-terminal sequence required for organelle import is retained in the mature protein. Furthermore, the DNA sequence shows that there are three additional amino acids, Gly-Lys-Ala, at the carboxyl terminus that are not found by protein sequencing. Additionally, comparison of the published amino acid sequence with that encoded by the open reading frame revealed three differences in the amino acid sequence. Comparison of the bovine and chicken liver sequences shows an overall level of 70% sequence homology, but there is complete identity of all residues that have been implicated in the function of the enzyme. When two mammalian cells, cos-7 and 293 cells, were transiently transfected with a plasmid containing the rhodanese coding region, rhodanese activity in lysates increased approximately 20-fold. Fluorograms of denaturing polyacrylamide gels detected a large increase in a polypeptide that co-migrated with the native protein and reacted with anti-rhodanese antibodies. Nondenaturing gels showed two active species that co-migrated with the two major electrophoretic forms purified by current procedures. Escherichia coli, transformed with a plasmid containing the rhodanese coding region, showed a 15-fold increase in rhodanese activity over baseline values. When the E. coli recombinant protein was analyzed on a nondenaturing gel, only one species was observed that co-electrophoresed with the more electropositive variant seen in purified bovine liver rhodanese. This single variant could be converted by carboxypeptidase B digestion to a form of the enzyme that co-migrated with the more electronegative species isolated from bovine liver. Thus, two major, enzymatically active electrophoretic variants, commonly observed in mammalian cells, can be accounted for by carboxyl-terminal processing without recourse to other post-translational modifications.  相似文献   

6.
The enzyme rhodanese is greatly stabilized in the range pH 4-6, and samples at pH 5 are fully active after several days at 23 degrees C. This is very different from results at pH greater than 7, where there is significant loss of activity within 1 h. A pH-dependent conformational change occurs below pH 4 in a transition centered around pH 3.25 that leads slowly to inactive rhodanese at pH 3 (t 1/2 = 22 min at pH3). The inactive rhodanese can be reactivated by incubation under conditions required for detergent-assisted refolding of denatured rhodanese. The inactive enzyme at pH 3 has the maximum of its intrinsic fluorescence spectrum shifted to 345 nm from 335 nm, which is characteristic of native rhodanese at pH greater than 4. At pH 3, rhodanese shows increased exposure of organized hydrophobic surfaces as measured by 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid binding. The secondary structure is maintained over the entire pH range studied (pH 2-7). Fluorescence anisotropy measurements of the intrinsic fluorescence provide evidence suggesting that the pH transition produces a state that does not display greatly increased average flexibility at tryptophan residues. Pepsin digestibility of rhodanese follows the pH dependence of conformational changes reported by activity and physical methods. Rhodanese is resistant to proteolysis above pH 4 but becomes increasingly susceptible as the pH is lowered. The form of the enzyme at pH 3 is cleaved at discrete sites to produce a few large fragments. It appears that pepsin initially cleaves close to one end of the protein and then clips at additional sites to produce species of a size expected for the individual domains into which rhodanese is folded. Overall, it appears that in the pH range between pH 3 and 4, titration of groups on rhodanese leads to opening of the structure to produce a conformation resembling, but more rigid than, the molten globule state that is observed as an intermediate during reversible unfolding of rhodanese.  相似文献   

7.
The enzyme rhodanese (thiosulfate:cyanide sulfurtransferase) is a ubiquitous enzyme present in all living organisms, from bacteria to humans and plays a central role in cyanide detoxification. The purpose of this investigation is to determine and compare rhodanese activity in different parts of urogenital systems of male and female sheep fetuses at 2.5, 3, 3.5, 4, 4.5, and 5 months of age. The highest activity of rhodanese in male fetus was in kidney cortex, followed by medulla of the kidney. No significant difference was observed in other organs. In female fetus, the highest activity was in kidney cortex followed by oviduct and medulla of kidney. The enzyme activity of tissues increased with age. There was no significant difference (P > 0.05) between male and female fetuses in levels of rhodanese activity of different tissues except in urinary bladder at 2.5 and 3 months and in urethra at 4.5 months of age. The results of this study might indicate the involvement of rhodanese in cyanide detoxification in tissues which are more exposed to cyanide. On the other hand, rhodanese might perform other functions which are specific in these tissues.  相似文献   

8.
The stability constants for the calcium and magnesium complexes of rhodanese are >105m?1 at both high and low substrate concentrations. The stoichiometry of alkaline earth metal ion binding totals close to 1 per 18,500 molecular weight. The usual assay reagents contain sufficient amounts of these metal ions to maintain added enzyme in its metal-complexed form. When reaction mixtures are treated with oxalate to remove calcium ions, inhibition of rhodanese activity is virtually complete under circumstances such that the contribution of magnesium ion is low.Zinc and a number of transition metal ions are inhibitors of rhodanese activity. Studies of the concentration dependence of these effects with zinc, copper, and nickel showed that: 1) Some cyanide complexes of these metals are competitive with the donor substrate, thiosulfate ion. The binding of the copper and zinc complexes is mutually competitive. 2) Another cyanide species of copper appears to combine with the free enzyme to form a functionally active complex. 3) The zinc cyanide species with a net positive charge is an inhibitor competitive with the acceptor substrate, cyanide ion.All of these observations are consistent with a model in which metal ions serve as the electrophilic site of rhodanese.  相似文献   

9.
The enzyme rhodanese (EC 2.8.1.1) appears as a single polypeptide chain protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this species is approx. 33 000. This contrasts with previous reports that rhodanese behaves on gel filtration chromatography as a rapidly equilibrating monomer-dimer system composed of identical subunits with a molecular weight of 18 500. We have investigated this apparent discrepancy by isolating the enzyme by the two different preparative procedures used in the above investigations. The two crystalline samples were subjected to gel filtration chromatography under a wide variety of conditions and to sodium dodecyl sulfate disc gel electrophoresis. The two preparations yielded rhodanese which behaved identically and no evidence for the monomeric species was obtained under any experimental condition tested. Thin-layer gel chromatography of clarified liver homogenates gave no evidence of rhodanese species other than that present in the purified samples. The variation in molecular weights observed in gel filtration chromatography may be a reflection of the conformational mobility of the enzyme leading to solvent-dependent changes in Stokes radius. If rhodanese is dimeric, special interactions must stabilize it under the conditions tested here.  相似文献   

10.
The enzyme rhodanese (thiosulfate/cyanide sulfurtransferase) is an ubiquitous enzyme and its activity is present in all living organisms from bacteria to man. Evidence has been accumulated to indicate that this enzyme plays a central role in cyanide detoxification. A comparison was made of rhodanese activity in different tissues of young male and adult male and female pig (Sus scrofa). The highest activity of rhodanese was in liver and kidney cortex of all animals. Among the remaining tissues examined, the kidney medulla and the stomach epithelium tended to have higher levels than other tissues, although this was not significant (P>0.05). The rhodanese activity of heart ventricle tissue of 6-month-old male animals was higher than 7-week-old male animals (P<0.05), and 6-month-old male animals had higher rhodanese activity in lung tissue, compared to 6-month-old female pigs (P<0.05). Medulla and spleen of younger male animals exhibited higher levels of activity (P<0.10) compared to older male pigs. The results of this study may indicate the involvement of rhodanese in cyanide detoxification in pig tissues, which have greater potential to be exposed to higher levels of cyanide.  相似文献   

11.
Whole cells of Pseudomonas aeruginosa possess rhodanese activity. The enzyme can be released by rapidly resuspending the cells in cold Tris--HCl buffer. Approximately 95% of the rhodanese activity is released by cold shock. Release of the enzyme can be inhibited either by preincubating the cells with Mg2+ or by incorporating Mg2+ into the shocking buffer. The effect of Mg2+ can be reversed by washing the cells twice with buffer prior to cold shock. While rhodanese can be released from P. aeruginosa by cold shock, lactic dehydrogenase, a cytoplasmic enzyme, remains within the cell. Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity. These data suggest that rhodanese in P. aeruginosa, like alkaline phosphatase, is located distal to the cytoplasmic membrane in the periplasmic space. Electron micrographs also show that portions of the lipopolysaccharide outer membrane are shed from the cell during cold shock, while cells preincubated with Mg2+ did not release segments of their outer membrane.  相似文献   

12.
Hatzfeld Y  Saito K 《FEBS letters》2000,470(2):147-150
The existence of rhodanese (thiosulfate:cyanide sulfurtransferase; EC 2.8.1.1) in plants has been highly controversial. We have isolated and characterized for the first time in plants two cDNAs encoding rhodanese isoforms in Arabidopsis thaliana, AtRDH1 and AtRDH2. Both cDNAs contained a full-length open reading frame, the expression of which increased the rhodanese activity of transgenic yeast. AtRDH1 protein was mitochondrial, while AtRDH2 was cytosolic. AtRDH1 and AtRDH2 genes originated from the duplication of a large genomic region in chromosome 1 which took place before the appearance of the Arabidopsis genus. Our results confirm the existence of rhodanese in plants.  相似文献   

13.
Green plants including representatives of angiosperms, gymnosperms, ferns, mosses, liverworts and green algae were shown to contain a specific sucrose phosphatase, the last enzyme in the pathway of sucrose synthesis. The enzyme from all species required Mg2+ for activity and it was partially inhibited by sucrose. It was not detected in a red alga, brown algae, or mushroom species which contain little or no sucrose.  相似文献   

14.
For the first time, the enzyme rhodanese had been refolded after thermal denaturation. This was previously not possible because of the strong tendency for the soluble enzyme to aggregate at temperatures above 37 degrees C. The present work used rhodanese that was covalently coupled to a solid support under conditions that were found to preserve enzyme activity. Rhodanese was immobilized using an N-hydroxymalonimidyl derivative of Sepharose containing a 6-carbon spacer. The number of immobilized competent active sites was measured by using [35S]SO3(2-) to form an active site persulfide that is the obligatory catalytic intermediate. Soluble enzyme was irreversibly inactivated in 10 min at 52 degrees C. The immobilized enzyme regained at least 30% of its original activity even after boiling for 20 min. The immobilized enzyme had a Km and Vmax that were each approximately 3 times higher than the corresponding values for the native enzyme. After preincubation at high temperatures, progress curves for the immobilized enzyme showed induction periods of up to 5 min before attaining apparently linear steady states. The pH dependence of the activity was the same for both the soluble and the immobilized enzyme. These results indicate significant stabilization of rhodanese after immobilization, and instabilities caused by adventitious solution components are not the sole reasons for irreversibility of thermal denaturation seen with the soluble enzyme. The results are consistent with models for rhodanese that invoke protein association as a major cause of inactivation of the enzyme. Furthermore, the induction period in the progress curves is consistent with studies which show that rhodanese refolding proceeds through intermediate states.  相似文献   

15.
Considerably larger quantities of cyanide are required to solubilize gold following the bio-oxidation of gold-bearing ores compared with oxidation by physical-chemical processes. A possible cause of this excessive cyanide consumption is the presence of the enzyme rhodanese. Rhodanese activities were determined for the bacteria most commonly encountered in bio-oxidation tanks. Activities of between 6.4 and 8.2 micromol SCN min(-1) mg protein(-1) were obtained for crude enzyme extracts of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Thiobacillus caldus, but no rhodanese activity was detected in Leptospirillum ferrooxidans. Rhodanese activities 2-2.5-fold higher were found in the total mixed cell mass from a bio-oxidation plant. T. ferrooxidans synthesized rhodanese irrespective of whether it was grown on iron or sulphur. With a PCR-based detection technique, only L. ferrooxidans and T. caldus cells were detected in the bio-oxidation tanks. As no rhodanese activity was associated with L. ferrooxidans, it was concluded that T. caldus was responsible for all of the rhodanese activity. Production of rhodanese by T. caldus in batch culture was growth phase-dependent and highest during early stationary phase. Although the sulphur-oxidizing bacteria were clearly able to convert cyanide to thiocyanate, it is unlikely that this rhodanese activity is responsible for the excessive cyanide wastage at the high pH values associated with the gold solubilization process.  相似文献   

16.
Molecular chaperones GroEL and GroES facilitate reactivation of denatured rhodanese which folds poorly unless the process is assisted. The present work tests the hypothesis that more extensively unfolded forms of rhodanese bind tighter than those forms that appear later in the folding pathway. The study of the interaction of different urea-induced forms of rhodanese with GroEL suggests that species preceding the domain folded form bind directly and productively to GroEL. Rhodanese partially folds while in the GroEL-GroES-ADP complex, but it does not significantly reach an active state. Partially folded rhodanese can be released from the GroEL-GroES-ADP complex by subdenaturing concentrations of urea as a homogeneous species that is committed to fold to the native conformation with little or no partitioning to the aggregated state. Dilution of denatured rhodanese to the same final concentration gives less active enzyme and significant aggregation. Urea denaturation studies show that active rhodanese released from complexes behaves identically to native enzyme, while spontaneously folded rhodanese has a different stability. These results are interpreted using a previously proposed model based on studies of unassisted rhodanese folding [Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120-128. Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63-70].  相似文献   

17.
A mathematical treatment is presented for the dependence of enzyme activity loss on the numbers and reactivities of the groups essential for catalytic function, when enzyme protein modification is carried out by the use of concentrations of protein reactive groups well in excess of that of modifying agent. Experimentally obtained data on the modification of rhodanese (thiosulphate sulphurtransferase, EC 2.8.1.1) by 2,4,6-trinitrobenzenesulphonic acid are presented, and it is shown that, at pH9.00, the fractional concentration of rhodanese groups, or of rhodanese group reactivities, essential for enzyme catalytic function is 0.88; this value is found to decrease with decreasing pH of the reaction medium. The possibility that rhodanese inactivation by 2,4,6-trinitrobenzenesulphonic acid is brought about by modification of groups other than amino groups is ruled out by a comparison of the enzyme-inactivation and protein-modification stoichiometries, for putative reaction models for enzyme and modifying agent.  相似文献   

18.
The inactive 2Fe species of the Fe protein of the nitrogenase of Klebsiella pneumoniae was generated by treating oxidized Fe protein (Kp2) with MgATP and chelator. Incubation of the 2Fe species of Kp2 with the sulphurtransferase rhodanese in the presence of thiosulphate, ferric citrate and reduced lipoate reproducibly restored activity. The extent of restoration of activity depended on the molar ratio of 2Fe Kp2 to rhodanese and was time-dependent. Re-activation did not occur in the reaction mixture lacking rhodanese.  相似文献   

19.
When the enzyme rhodanese (EC 2. 8. 1. 1) is digested with trypsin under controlled conditions, the parent protein is converted from a polypeptide of molecular weight 32,600 to a polypeptide of molecular weight 28,800. This proteolytic conversion occurs with no loss of rhodanese activity. In fact, preliminary results indicate that the polypeptide produced by proteolysis has higher sulfur transferase activity than the native rhodanese.  相似文献   

20.
In previous studies on the rhodanese activity of bovine liver mitochondria, we have shown that in addition to activity observed in the soluble protein fraction, there is rhodanese activity that is bound to the mitochondrial membrane. The latter activity accounts for as much as 40% of the total and, in situ, is associated in a multiprotein complex that forms iron-sulfur centers. In the present studies, we have investigated the rhodanese activity of bovine heart muscle. We have found that the major part of this enzyme activity is localized in the mitochondria and, further, that at least 25% of the total rhodanese activity of heart mitochondria is membrane-bound. As in liver tissue, the heart activity at least in part is associated in a multiprotein complex that forms iron-sulfur centers. Upon purification of the heart rhodanese in the soluble protein fraction, there is a 10- to 30-fold decrease inK m values for the standard assay substrates thiosulfate and cyanide ions. These observations are consistent with the interpretation that there are activated and deactivated (low activity) forms of the heart enzyme in crude extracts, but only the activated form survives purification. The present results, together with our recent finding that liver mitochondrial rhodanese is subject to phosphorylation, lend support to our proposal that the rhodaneses serve as converter enzymes which regulate the rate of electron transport through sulfuration of respiratory chain components. The rhodaneses, in turn, are controlled by protein kinases and the local ATP concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号