首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pollination mutualism between yucca moths and yuccas highlights the potential importance of host plant specificity in insect diversification. Historically, one pollinator moth species, Tegeticula yuccasella, was believed to pollinate most yuccas. Recent phylogenetic studies have revealed that it is a complex of at least 13 distinct species, eight of which are specific to one yucca species. Moths in the closely related genus Prodoxus also specialize on yuccas, but they do not pollinate and their larvae feed on different plant parts. Previous research demonstrated that the geographically widespread Prodoxus quinquepunctellus can rapidly specialize to its host plants and may harbor hidden species diversity. We examined the phylogeographic structure of P. quinquepunctellus across its range to compare patterns of diversification with six coexisting pollinator yucca moth species. Morphometric and mtDNA cytochrome oxidase I sequence data indicated that P. quinquepunctellus as currently described contains two species. There was a deep division between moth populations in the eastern and the western United States, with limited sympatry in central Texas; these clades are considered separate species and are redescribed as P. decipiens and P. quinquepunctellus (sensu stricto), respectively. Sequence data also showed a lesser division within P. quinquepunctellus s.s. between the western populations on the Colorado Plateau and those elsewhere. The divergence among the three emerging lineages corresponded with major biogeographic provinces, whereas AMOVA indicated that host plant specialization has been relatively unimportant in diversification. In comparison, the six pollinator species comprise three lineages, one eastern and two western. A pollinator species endemic to the Colorado Plateau has evolved in both of the western lineages. The east-west division and the separate evolution of two Colorado Plateau pollinator species suggest that similar biogeographic factors have influenced diversification in both Tegeticula and Prodoxus. For the pollinators, however, each lineage has produced a monophagous species, a pattern not seen in P. quinquepunctellus.  相似文献   

2.
The interactions between herbivorous insects and their host plants have been central in generating diversification in both groups. We used a community of four yucca moth species, monophagous on the host plant Hesperoyucca whipplei (Agavaceae), to examine how the type of interaction and where insects feed within a plant influence phylogeographic structure of herbivorous insects. These four species included two fruit-feeders, one mutualistic and one commensalistic, and two commensalistic stalk-feeders. Surveys based on mtDNA cytochrome oxidase I sequence data demonstrated that the moth species differed in phylogeographic history. Populations of the mutualist pollinator, Tegeticula maculata, exhibited the most subdivision in comparison to the three commensal Prodoxus species (both genera in Lepidoptera, Prodoxidae). Feeding location was also correlated with differences in phylogeographic history through its influence on population sizes and the probability of gene flow. The results suggest that both the outcome of interactions and where insects feed may influence population structure.  相似文献   

3.
Abstract.  1. Although the moth–yucca mutualism is often studied as a pairwise interaction, yucca plants are also the sole host for a variety of other visitors. One of these additional visitors is a stem-boring moth, Prodoxus quinquepunctellus.
2. In this study, it is shown how the reproductive success of Prodoxus indirectly depends on the interactions between yuccas and their pollinators ( Tegeticula , Prodoxidae) as well as the indirect effects of ants and aphids.
3. Aggressive wood ants foraging on yuccas will attack adult Prodoxus moths while attempting to oviposit. This reduces the number of eggs laid in yucca stalks, leading to fewer larvae feeding in the stalks.
4. Once in the stalk, the survival of Prodoxus eggs/larvae depends upon the rate at which the flowering stalks dry out during fruit maturation. Portions of the stalk above the highest fruit dry out quickly and survivorship approaches zero in these dry sections, while larvae in green sections of the flowering stalk have significantly higher survival rates. The presence of aphids feeding on the stalk slows down the rate of stalk drying and could lead to increased survival of Prodoxus larvae.
5. Overall, ants have strong indirect effects on P. quinquepunctellus by controlling how many eggs are laid in the stalk and by influencing the distribution of aphids. However, it is primarily the presence and position of the fruit that can affect larval survivorship, and fruit position is a function of pollinator visits and resource limitation. These complex interactions illustrate the importance of studying the yucca–moth mutualism in a community context.  相似文献   

4.
John F. Addicott 《Oecologia》1986,70(4):486-494
Summary Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3–28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6–6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0–43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0–13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6–19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.  相似文献   

5.
Althoff DM 《Molecular ecology》2008,17(17):3917-3927
Parasitic taxa span an antagonistic continuum, with some parasites inflicting no fitness costs to some that kill the host after feeding. Host-associated differentiation is postulated as a major process facilitating speciation in many parasitic taxa. Here, I examined the importance of host-associated differentiation in a parasitoid wasp that develops on yucca moths in the genus Prodoxus. Prodoxus are specialists on Yucca , and moth speciation is closely tied to differences in microhabitat use within a plant and among host plant species. Parasitoids in the genus Eusandalum have been reared from Prodoxus species distributed across Yucca . Estimates of host-use patterns obtained through rearings of adult wasps were combined with surveys of mitochondrial DNA cytochrome oxidase I sequence data and amplified fragment length polymorphism markers to determine if populations of Eusandalum were genetically structured based on host use. Eusandalum populations were genetically structured based on geographical distance rather than moth host species, microhabitats within plants, or Yucca species. The results are contrary to the patterns observed in the host genus Prodoxus . Although parasitoids exhibit parasite-like characteristics, these results suggest that Eusandalum may be best viewed as a predator. Female wasps are able to utilize any moth species present at a given locality, and there is little likelihood that host specialization may facilitate population subdivision and speciation.  相似文献   

6.
Plant-insect associations have served as models for investigations of coevolution and the influence of biotic interactions on diversification. The pollination association between yuccas and yucca moths is a classic example of an obligate mutualism often suggested to have been affected by coevolution. Recent work has shown high host specificity in pollinating yucca moths, and here we use Tegeticula yuccasella, the species with the widest diet breadth, to ask how host specificity and isolation by distance contribute to specialization. Isolation by distance at a regional scale was observed in nucleotide variation within the mitochondrial gene cytochrome oxidase I (COI) (r =.294; P =.003). Host-related genetic structure (F(ct) = 0.08) was found to be slightly lower than the level of structure observed between eastern and western moth populations (F(ct) = 0.096). However, 56% of the COI haplotypes sampled from moths on Yucca filamentosa mapped to a host-specific clade in the haplotype network. Taken together, these results suggest that differentiation among T. yuccasella populations on alternative hosts is slight, but gene flow is influenced by both host association and geographic distance.  相似文献   

7.
The interaction between yucca plants and yucca moths has been one of the focal model systems investigated in the study of pollination mutualism and coevolution, especially in terms of understanding the prevention of overexploitation by mutualist partners. Yuccas have the ability to assess the number of eggs placed by pollinators into their ovaries, and can preferentially abort those flowers that would have many moth larvae consuming yucca seeds. Previous phylogenetic research identified a rapid radiation of moth species that corresponded with shifts in the interaction with their host plants. These shifts led to the evolution of moth species that circumvent the egg detection method used by yuccas to limit seed damage. In particular, some pollinator species deposit their eggs so that they are undetectable by the plants, whereas other species are ‘cheaters’ that have lost the ability to pollinate, yet deposit eggs into developing fruit rather than flowers. The evolution of these new species happened so quickly that the phylogeny of the moths has remained unresolved despite repeated attempts with standard Sanger sequencing of mtDNA loci and AFLP marker generation. Here, we use extensive analyses of RAD‐seq data to determine the phylogenetic relationships among yucca moth species. The results provide a robust phylogenetic framework that identifies the evolutionary relationships among shifts in egg‐laying strategies, as well as determining the closest pollinating relatives to the cheater species. Based on the obtained phylogeny, a shift in egg‐laying strategy that avoided the overexploitation regulatory mechanism used by yucca plants was a precursor for the evolution of two species with cheating behaviour.  相似文献   

8.
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

9.
Reciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers. Yucca moths, which are the sole pollinators of yuccas, impose a cost in the form of seed consumption by the moth larvae. Here we ask whether there also is a genetic cost through selfish moth behavior that may lead to high levels of self fertilization in the yuccas. Historically, it has been assumed that females leave a plant immediately after collecting pollen, but few data are available. Observations of a member of the Tegeticula yuccasella complex on Yucca filamentosa revealed that females remained on the plant and oviposited in 66% of all instances after observed pollen collections, and 51% of all moths were observed to pollinate the same plant as well. Manual cross and self pollinations showed equal development and retention of fruits. Subsequent trials to assess inbreeding depression by measuring seed weight, germination date, growth rate, and plant mass at 5 months revealed significant negative effects on seed weight and germination frequency in selfed progeny arrays. Cumulative inbreeding depression was 0.475, i.e., fitness of selfed seeds was expected to be less than half that of outcrossed seeds. Single and multilocus estimates of outcrossing rates based on allozyme analyses of open-pollinated progeny arrays did not differ from 1.0. The discrepancy between high levels of behavioral self-pollination by the moths and nearly complete outcrossing in mature seeds can be explained through selective foreign pollen use by the females, or, more likely, pollen competition or selective abortion of self-pollinated flowers during early stages of fruit development. Thus, whenever the proportion of pollinated flowers exceeds the proportion that can be matured to ripe fruit based on resource availability, the potential detrimental genetic effects imposed through geitonogamous pollinations can be avoided in the plants. Because self-pollinated flowers have a lower probability of retention, selection should act on female moths to move among plants whenever moth density is high enough to trigger abortion. Received: 18 March 1996 \Accepted: 30 July 1996  相似文献   

10.
The determinants of a species' geographic distribution are a combination of both abiotic and biotic factors. Environmental niche modeling of climatic factors has been instrumental in documenting the role of abiotic factors in a species' niche. Integrating this approach with data from species interactions provides a means to assess the relative roles of abiotic and biotic components. Here, we examine whether the high host specificity typically exhibited in the active pollination mutualism between yuccas and yucca moths is the result of differences in climatic niche requirements that limit yucca moth distributions or the result of competition among mutualistic moths that would co‐occur on the same yucca species. We compared the species distribution models of two Tegeticula pollinator moths that use the geographically widespread plant Yucca filamentosa. Tegeticula yuccasella occurs throughout eastern North America whereas T. cassandra is restricted to the southeastern portion of the range, primarily occurring in Florida. Species distribution models demonstrate that T. cassandra is restricted climatically to the southeastern United States and T. yuccasella is predicted to be able to live across all of eastern North America. Data on moth abundances in Florida demonstrate that both moth species are present on Y. filamentosa; however, T. cassandra is numerically dominant. Taken together, the results suggest that moth geographic distributions are heavily influenced by climate, but competition among pollinating congeners will act to restrict populations of moth species that co‐occur.  相似文献   

11.
The origins of obligate pollination mutualisms, such as the classic yucca–yucca moth association, appear to require extensive trait evolution and specialization. To understand the extent to which traits truly evolved as part of establishing the mutualistic relationship, rather than being pre‐adaptations, we used an expanded phylogenetic estimate with improved sampling of deeply‐diverged groups to perform the first formal reconstruction of trait evolution in pollinating yucca moths and their nonpollinating relatives. Our analysis demonstrates that key life‐history traits of yucca moths, including larval feeding in the floral ovary and the associated specialized cutting ovipositor, as well as colonization of woody monocots in xeric habitats, may have been established before the obligate mutualism with yuccas. Given these pre‐existing traits, novel traits in the mutualist moths are limited to the active pollination behaviours and the tentacular appendages that facilitate pollen collection and deposition. These results suggest that a highly specialized obligate mutualism was built on the foundation of pre‐existing interactions between early Prodoxidae and their host plants, and arose with minimal trait evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 847–855.  相似文献   

12.
Abstract. Yucca moths (Lep., Prodoxidae) are well‐known for their obligate pollination mutualism with yuccas. In addition to the pollinators, yuccas also host many non‐pollinating yucca moths. Here the genus Prodoxus, the non‐pollinating sister group of the pollinators, is revised using morphological and molecular data, their phylogenetic relationships are analysed, and the evolution of host tissue specialization explored. Twenty‐two species are recognized, including nine new species: Prodoxus gypsicolor sp.n. , P. sonorensis sp.n. , P. carnerosanellus sp.n. , P. tamaulipellus sp.n. , P. weethumpi sp.n. , P. tehuacanensis sp.n. , P. californicus sp.n. , P. mapimiensis sp.n. and P. atascosanellus sp.n. Prodoxus y‐inversus Riley, P. coloradensis Riley and P. sordidus Riley are redescribed. The genus Agavenema is synonymized with Prodoxus. Phylogenetic analyses indicated that stalk‐feeding is basal within the group, that there are three separate origins of fruit‐feeding, and one origin of leaf‐mining from a stalk‐feeding ancestor. Although species with different feeding habits often coexist within hosts, the analyses suggest that ecological specialization and diversification within a host only may have occurred within one or possibly two hosts.  相似文献   

13.
Tegeticula maculata is one of the most ancient and morphologically variable lineages within the yucca moths, yet has apparently undergone little diversification in comparison with much younger yucca moth lineages that have rapidly diversified. A phylogeographic approach was used to determine the number of independent lineages within T. maculata and to examine whether these patterns corresponded with morphological differences between its subspecies maculata and extranea. Phylogenetic analysis of mitochondrial DNA sequence variation indicated that the two subspecies are in separate clades, but there was also an equally deep split within subspecies maculata. There was no evidence for gene flow among regions and there was considerable substructure within clades. The phylogeographic structure of moth populations among and within subspecies can be explained in part by historical biogeographic boundaries and increasingly patchy postglacial distribution of the exclusive host plant, Hesperoyucca whipplei. Local specialization and co-adaptation would be possible in the absence of apparent gene flow, yet gross morphological divergence is limited to the very old split between the subspecies. Sorting of ancient mitochondrial lineages followed by local genetic differentiation may explain the pattern of high genetic structure with limited speciation.  相似文献   

14.
Ecological interactions between yucca moths (Tegeticula, Prodoxidae) and their host plants (Yucca, Agavaceae) are exemplary of obligate plant-pollinator mutualism and co-evolution. We describe a multiplex microsatellite DNA protocol for species identification and sibship assignment of sympatric larvae from Tegeticula synthetica and Tegeticula antithetica, pollinators of the Joshua tree (Yucca brevifolia). Bayesian clustering provides correct diagnosis of species in 100% of adult moths, with unambiguous identification of sympatric larvae. Sibship assignments show that larvae within a single fruit are more likely to be full-sibs or half-sibs than larvae from different fruit, consistent with the hypothesis that larval clutches are predominantly the progeny of an individual female.  相似文献   

15.
Costs of two non-mutualistic species in a yucca/yucca moth mutualism   总被引:1,自引:0,他引:1  
Mutualisms often involve significant costs for participants. Costs are inflicted by mutualists themselves, as well as by associated, non-mutualistic species. These costs are rarely quantified, however, particularly the ones extrinsic to the pairwise interaction. We compare costs inflicted by an obligate mutualist pollinator and two common exploiters of an Arizona yucca over a 2-year period. The magnitude of seed damage from seed and fruit-feeding beetle larvae (Carpophilus longus, Nitidulidae) was similar to damage from the seed-eating larvae of Yucca schottii's pollinator moth Tegeticula yuccasella (Prodoxidae), averaging about 15 seeds destroyed per fruit in each case. The two seed predators usually fed within the same fruits, although rarely side by side. In contrast, the presence of fruit-galling moth larvae (Prodoxusy-inversus, Prodoxidae) appeared to benefit the yucca: individual Tegeticula destroyed only half as many seeds in galled fruits as they did in ungalled fruits. We discuss three general implications of these results. Firstly, the costs of non-mutualists to the two mutualistic partners are not necessarily parallel. Secondly, measurable costs of non-mutualists do not necessarily translate into an impact on the success of the mutualism itself, because they may be incurred after mutualistic activities take place. Finally, the costs of mutualists to each other can differ substantially depending on the presence or absence of non-mutualistic species. Received:17 July 1996 / Accepted:10 June 1997  相似文献   

16.
Coevolution between flowering plants and their pollinators is thought to have generated much of the diversity of life on Earth, but the population processes that may have produced these macroevolutionary patterns remain unclear. Mathematical models of coevolution in obligate pollination mutualisms suggest that phenotype matching between plants and their pollinators can generate reproductive isolation. Here, we test this hypothesis using a natural experiment that examines the role of natural selection on phenotype matching between yuccas and yucca moths (Tegeticula spp.) in mediating reproductive isolation between two varieties of Joshua tree (Yucca brevifolia var. brevifolia and Y. brevifolia var. jaegeriana). Using passive monitoring techniques, DNA barcoding, microsatellite DNA genotyping, and sibship reconstruction, we track host specificity and the fitness consequences of host choice in a zone of sympatry. We show that the two moth species differ in their degree of host specificity and that oviposition on a foreign host plant results in the production of fewer offspring. This difference in host specificity between the two moth species mirrors patterns of chloroplast introgression from west to east between host varieties, suggesting that natural selection acting on pollinator phenotypes mediates gene flow and reproductive isolation between Joshua‐tree varieties.  相似文献   

17.
The yucca moths ( Tegeticula and Parategeticula ; Lepidoptera, Prodoxidae) are well known for their obligate relationship as exclusive pollinators of yuccas. Revisionary work in recent years has revealed far higher species diversity than historically recognized, increasing the number of described species from four to 20. Based on field surveys in Mexico and examination of collections, we describe five additional species: T. californica Pellmyr sp. nov. , T. tehuacana Pellmyr & Balcázar-Lara sp. nov. , T. tambasi Pellmyr & Balcázar-Lara sp. nov., T. baja Pellmyr & Balcázar-Lara sp. nov. and P. ecdysiastica Pellmyr & Balcázar-Lara sp. nov . Tegeticula treculeanella Pellmyr is identified as a junior synonym of T. mexicana Bastida. A diagnostic key to the adults of all species of the T. yuccasella complex is provided. A phylogeny based on a 2104-bp segment of mitochondrial DNA (mtDNA) in the cytochrome oxidase I and II region supported monophyly of the two pollinator genera, and strongly supported monophyly of the 17 recognized species of the T. yuccasella complex. Most relationships are well supported, but some relationships within a recent and rapidly diversified group of 11 taxa are less robust, and in one case conflicts with a whole-genome data set (amplified fragment length polymorphism, AFLP). The current mtDNA-based analyses, together with previously published AFLP data, provide a robust phylogenetic foundation for future studies of life-history evolution and host interactions in one of the classical models of coevolution and obligate mutualism.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 297–314.  相似文献   

18.
Brood pollination mutualisms—interactions in which specialized insects are both the pollinators (as adults) and seed predators (as larvae) of their host plants—have been influential study systems for coevolutionary biology. These mutualisms include those between figs and fig wasps, yuccas and yucca moths, leafflowers and leafflower moths, globeflowers and globeflower flies, Silene plants and Hadena and Perizoma moths, saxifrages and Greya moths, and senita cacti and senita moths. The high reciprocal diversity and species‐specificity of some of these mutualisms have been cited as evidence that coevolution between plants and pollinators drives their mutual diversification. However, the mechanisms by which these mutualisms diversify have received less attention. In this paper, we review key hypotheses about how these mutualisms diversify and what role coevolution between plants and pollinators may play in this process. We find that most species‐rich brood pollination mutualisms show significant phylogenetic congruence at high taxonomic scales, but there is limited evidence for the processes of both cospeciation and duplication, and there are no unambiguous examples known of strict‐sense contemporaneous cospeciation. Allopatric speciation appears important across multiple systems, particularly in the insects. Host‐shifts appear to be common, and widespread host‐shifts by pollinators may displace other pollinator lineages. There is relatively little evidence for a “coevolution through cospeciation” model or that coevolution promotes speciation in these systems. Although we have made great progress in understanding the mechanisms by which brood pollination mutualisms diversify, many opportunities remain to use these intriguing symbioses to understand the role of biotic interactions in generating biological diversity.  相似文献   

19.
Althoff DM  Segraves KA  Sparks JP 《Oecologia》2004,140(2):321-327
Yucca moths are most well known for their obligate pollination mutualism with yuccas, where pollinator moths provide yuccas with pollen and, in exchange, the moth larvae feed on a subset of the developing yucca seeds. The pollinators, however, comprise only two of the three genera of yucca moths. Members of the third genus, Prodoxus, are the bogus yucca moths and are sister to the pollinator moths. Adult Prodoxus lack the specialized mouthparts used for pollination and the larvae feed on plant tissues other than seeds. Prodoxus larvae feed within the same plants as pollinator larvae and have the potential to influence yucca reproductive success directly by drawing resources away from flowers and fruit, or indirectly by modifying the costs of the mutualism with pollinators. We examined the interaction between the scape-feeding bogus yucca moth, Prodoxus decipiens, and one of its yucca hosts, Yucca filamentosa, by comparing female reproductive success of plants with and without moth larvae. We determined reproductive success by measuring a set of common reproductive traits such as flowering characteristics, seed set, and seed germination. In addition, we also quantified the percent total nitrogen in the seeds to determine whether the presence of larvae could potentially reduce seed quality. Flowering characteristics, seed set, and seed germination were not significantly different between plants with and without bogus yucca moth larvae. In contrast, the percent total nitrogen content of seeds was significantly lower in plants with P. decipiens larvae, and nitrogen content was negatively correlated with the number of larvae feeding within the inflorescence scape. Surveys of percent total nitrogen at three time periods during the flowering and fruiting of Y. filamentosa also showed that larval feeding decreased the amount of nitrogen in fruit tissue. Taken together, the results suggest that although P. decipiens influences nitrogen distribution in Y. filamentosa, this physiological effect does not appear to impact the female components of reproductive success.  相似文献   

20.
Re-evaluating the role of selective abscission in moth/yucca mutualisms   总被引:3,自引:0,他引:3  
Conflicts of interest are common to mutualisms, particularly those derived from exploitative interactions. Conflicts of interest are particularly pronounced in pollination/seed predation mutualisms, such as moth/yucca interactions, where consumption of seeds by larvae of a plant's pollinator will raise the fitness of the pollinator but lower the fitness of the plant. A central question in these mutualisms is, therefore, “what limits seed predation?” If plants with excess flowers selectively abscise flowers containing many eggs, they may reduce seed predation and overall increase their fecundity. If eggs in abscised flowers die, selective abscission may additionally contribute to the limitation or regulation of pollinator populations, thereby decreasing the probability of future overexploitation. We examined the effect of selective abscission in the mutualism between Yucca kanabensis and one of its pollinating moths, Tegeticula altiplanella. Per capita mortality of moth eggs due to abscission was high (95.5%), but did not increase on inflorescences with more ovipositions per flower. Overall mortality was partitioned into two components based upon the proportion of visited flowers abscised (i.e. resource‐limitation) and additional mortality (=selective abscission). Resource‐limitation per se inflicted 93.9% egg mortality, or most of the mortality due to abscission. But, the average number of eggs in fruit was lower than the average number of eggs in flowers, indicating that there was some selectivity of abscission. However, neither source of mortality increased on inflorescences with more ovipositions per visited flower. Egg mortality resulting from selective abscission was not as high as possible, because the yuccas appeared to use oviposition‐damaged ovules as a cue for selective abscission, and there was considerable variation in the relationship between oviposition number and damaged ovules. However, even if yuccas had retained the flowers containing the fewest eggs, selective abscission still would not have been higher on inflorescences with more ovipositions per flower. Considering also that, 1) number of ovipositions is a poor predictor of the number of larvae that hatch and feed on the developing seeds in a fruit and that, 2) there are several moth/yucca interactions in which selective abscission does not occur, we conclude that abscission, and particular selective abscission, may have density‐limiting effects on moth populations, but will fail as general explanations for regulating the dynamics of moth populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号