首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full‐sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among‐population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low‐flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail.  相似文献   

2.
3.
 Morphological and electrophoretic data were studied to examine species delimitation, patterns of morphological and genetic variation in three Korean Hepatica including two endemics, H.␣maxima and H. insularis. Based on a phenogram using 15 morphological characters, taxa were distinct; it was consistent with the phenogram based on genetic distance. In the enzyme electrophoresis study, the genetic identities suggested that three taxa were genetically divergent enough to be recognized as different species, falling within the range expected␣for congeners. The genetic identity between H.␣asiatica and H. insularis was higher than the values between these two taxa and H.␣maxima, a restricted endemic of Ulleung Island. The least genetic variation was found in H. maxima and the greatest in widespread H. asiatica. These data are consistent with theoretical expectations that small populations are more likely to be genetically depauperate. Received November 13, 2001; accepted May 10, 2002 Published online: December 11, 2002  相似文献   

4.
We examined the genetic variation of 12 isozyme loci in 14 populations of Matthiola (Brassicaceae) representing the geographic distribution of the species M. incana, M. fruticulosa ssp. fruticulosa and M. tricuspidata in the Sicilian insular system and the adjacent mainland areas to estimate the levels and apportionment of genetic variation in the insular populations and to understand their population dynamics. The disparity in the distribution of polymorphism in populations of M. incana ssp. incana (low within populations but with high values of FST and GST) contrasts with the homogeneity in the inter-population distribution of the high genetic variation detected in M. tricuspidata and M. fruticulosa ssp. fruticulosa. While the low polymorphism found in M. incana ssp. incana is consistent with its origin through cultivation and the associated lack of gene flow, the Sicilian populations of the other two taxa probably derived from multiple founder events from nearby continental areas and, according to our estimates, have maintained high interpopulational gene flow. Unlike M. incana, the Sicilian populations of M. tricuspidata and M. fruticulosa ssp. fruticulosa could have survived the glaciations in refugia. This higher antiquity, together with the maintenance of abundant gene flow, largely explains their high values of genetic variation. In contrast, M. incana ssp. pulchella and M. incana ssp. rupestris have low indices of polymorphism and they are probably neo-endemics, as their distribution areas were severely affected by the Plio-Pleistocene glaciations.  相似文献   

5.
Strong environmental gradients can affect the genetic structure of plant populations, but little is known as to whether closely related species respond similarly or idiosyncratically to ecogeographic variation. We analysed the extent to which gradients in temperature and rainfall shape the genetic structure of four Stipa species in four bioclimatic regions in Jordan. Genetic diversity, differentiation and structure of Stipa species were investigated using amplified fragment length polymorphism (AFLP) molecular markers. For each of the four study species, we sampled 120 individuals from ten populations situated in distinct bioclimatic regions and assessed the degree of genetic diversity and genetic differentiation within and among populations. The widespread ruderals Stipa capensis and S. parviflora had higher genetic diversity than the geographically restricted semi‐desert species Sarabica and S. lagascae. In three of the four species, genetic diversity strongly decreased with precipitation, while genetic diversity increased with temperature in S. capensis. Most genetic diversity resided among populations in the semi‐desert species (ΦST = 0.572/0.595 in S. arabica/lagascae) but within populations in the ruderal species (ΦST = 0.355/0.387 S. capensis/parviflora). Principal coordinate analysis ( PCoA) and STRUCTURE analysis showed that Stipa populations of all species clustered ecogeographically. A genome scan revealed that divergent selection at particular AFLP loci contributed to genetic differentiation. Irrespective of their different life histories, Stipa species responded similarly to the bioclimatic gradient in Jordan. We conclude that, in addition to predominant random processes, steep climatic gradients might shape the genetic structure of plant populations.  相似文献   

6.
Phenotypically diverse Lake Malawi cichlids exhibit similar genomes. The extensive sharing of genetic polymorphism among forms has both intrigued and frustrated biologists trying to understand the nature of diversity in this and other rapidly evolving systems. Shared polymorphism might result from hybridization and/or the retention of ancestrally polymorphic alleles. To examine these alternatives, we used new genomic tools to characterize genetic differentiation in widespread, geographically structured populations of Labeotropheus fuelleborni and Metriaclima zebra. These phenotypically distinct species share mitochondrial DNA (mtDNA) haplotypes and show greater mtDNA differentiation among localities than between species. However, Bayesian analysis of nuclear single nucleotide polymorphism (SNP) data revealed two distinct genetic clusters corresponding perfectly to morphologically diagnosed L. fuelleborni and M. zebra. This result is a function of the resolving power of the multi‐locus dataset, not a conflict between nuclear and mitochondrial partitions. Locus‐by‐locus analysis showed that mtDNA differentiation between species (FCT) was nearly identical to the median single‐locus SNP FCT. Finally, we asked whether there is evidence for gene flow at sites of co‐occurrence. We used simulations to generate a null distribution for the level of differentiation between co‐occurring populations of L. fuelleborni and M. zebra expected if there was no hybridization. The null hypothesis was rejected for the SNP data; populations that co‐occur at rock reef sites were slightly more similar than expected by chance, suggesting recent gene flow. The coupling of numerous independent markers with extensive geographic sampling and simulations utilized here provides a framework for assessing the prevalence of gene flow in recently diverged species.  相似文献   

7.
Interest in using native grass species for restoration is increasing, yet little is known about the ecology and genetics of native grass populations or the spatial scales over which seed can be transferred and successfully grown. The purpose of this study was to investigate the genetic structure within and among populations of Elymus glaucus in order to make some preliminary recommendations for the transfer and use of this species in revegetation and restoration projects. Twenty populations from California, Oregon, and Washington were analyzed for allozyme genotype at 20 loci, and patterns of variation within and among populations were determined. Allozyme variation at the species level was high, with 80% of the loci polymorphic and an average expected heterozygosity (an index of genetic diversity) of 0.194. All but two of the populations showed some level of polymorphism. A high degree of population differentiation was found, with 54.9% of the variation at allozyme loci partitioned among populations (Fst= 0.549). A lesser degree of genetic differentiation among closely spaced subpopulations within one of the populations was also demonstrated (Fst= 0.124). Self-pollination and the patchy natural distribution of the species both likely contribute to the low level of gene flow (Nm= 0.205) that was estimated. Zones developed for the transfer of seed of commercial conifer species may be inappropriate for transfer of E. glaucus germplasm because conifer species are characterized by high levels of gene flow. Limited gene flow in E. glaucus can facilitate the divergence of populations over relatively small spatial scales. This genetic differentiation can be due to random genetic drift, localized selective pressures, or both. In order to minimize the chances of planting poorly adapted germplasm, seed of E. glaucus may need to be collected in close proximity to the proposed restoration site.  相似文献   

8.
The level and pattern of genetic variation was analyzed in four species of the fern genus Adiantum L., A. hispidulum Sw., A. incisum Forrsk., A. raddianum C.Presl, and A. zollingeri Mett. ex Kuhn, originating from South India, using the ISSR fingerprinting method. The populations of Adiantum possessed a considerable level of genetic variation, the diversity indices ranging from 0.284 to 0.464. Only 12% of the ISSR markers found were restricted to one species only, and 54% were detected in all four species. The analysis of molecular variance revealed that 71.1% of variation was present within populations. The proportion of variation detected among species was only 18.5% while the proportion of variation among populations within species equalled 10.4%. Despite the low level of intrageneric differentiation, the discriminant analysis and clustering of genetic distances indicated that the four Adiantum species are genetically distinct. The FST values calculated for the species were low, varying from 0.089 to 0.179. No linkage disequilibrium was detected between the loci. Such low level of differentiation among populations and the presence of linkage equilibrium reflect that the life history of Adiantum ferns apparently involves common or relatively common sexuality, effective wind-dispersal of spores and outcrossing.  相似文献   

9.
Allozyme polymorphism was studied in two populations of Isophya kraussi and Isophya stysi. Both species are flightless and have low dispersal ability. As a consequence, we expected high level of genetic differentiation among their local populations. Samples were collected in three regions of Hungary. Enzyme polymorphism was investigated at 10 loci (Aldox, Est, Got, Gpdh, Hk, Idh, Mdh, Me, Pgi and Pgm) in both species. High levels of polymorphism were detected in all samples. Gpdh proved to be diagnostic as there were no common alleles in the two species. At four further loci (Got, Hk, Mdh and Me), the two species had one common allele together with one or more differentiating alleles. We detected high F IT values implying a high level of genetic variation. The positive F IS values suggested a tendency of heterozygote deficiency in both species. The highly significant overall F ST values indicated clear genetic differentiation among the local populations. Thus our results confirmed the taxonomic status of these two species. The dendrogram constructed on the basis of Nei's genetic distances and the results of the PCA analyses fully confirmed those obtained by F-statistics.  相似文献   

10.
The levels and partitioning of genetic diversity and inbreeding depression were investigated in Tupistra pingbianensis, a narrow endemic of South-east Yunnan, China, characterized by a naturally fragmented distribution due to extreme specialization on a rare habitat type. Here genetic diversity and patterns of genetic variation within and among 11 populations were analyzed using AFLP markers with 97 individuals across its whole geographical range. High levels of genetic variation were revealed both at the species level (P99 = 96.012%; Ht = 0.302) and at the population level (P99 = 51.41%; Hs = 0.224). Strong genetic differentiation among populations was also detected (FST = 0.2961; ⍬= 0.281), which corresponded to results reported for typical animal-pollinated, mixed selfing and outcrossing plant species. This result was consistent with mating patterns detected by our pollination experiments. The indirect estimate of gene flow based on ⍬ was low (Nm = 0.64). Special habitat and its life history traits may play an important role in shaping the genetic diversity and the genetic structure of this species. A pollination experiment also fail to detect significant inbreeding depression upon F1 fruit set, seed weight and germinate rate fitness-traits. Since naturally rare species T. pingbianensis is not seriously genetically impoverished and likely to have adapted to tolerating a high level of inbreeding early in its history, we propose this species need only periodic monitoring to ensure their continued persistence but not intervention to remain viable.  相似文献   

11.
Knowledge about the reproduction strategies of invasive species is fundamental for effective control. The invasive Fallopia taxa (Japanese knotweed s.l.) reproduce mainly clonally in Europe, and preventing spread of vegetative fragments is the most important control measure. However, high levels of genetic variation within the hybrid F. × bohemica indicate that hybridization and seed dispersal could be important. In Norway in northern Europe, it is assumed that these taxa do not reproduce sexually due to low temperatures in the autumn when the plants are flowering. The main objective of this study was to examine the genetic variation of invasive Fallopia taxa in selected areas in Norway in order to evaluate whether the taxa may reproduce by seeds in their most northerly distribution range in Europe. Fallopia stands from different localities in Norway were analyzed with respect to prevalence of taxa, and genetic variation within and between taxa was studied using amplified fragment length polymorphism (AFLP). Taxonomic identification based on morphology corresponded with identification based on simple sequence repeats (SSR) and DNA ploidy levels (8× Fjaponica, 6× F. × bohemica and 4× F. sachalinensis). No genetic variation within Fjaponica was detected. All F. × bohemica samples belonged to a single AFLP genotype, but one sample had a different SSR genotype. Two SSR genotypes of F. sachalinensis were also detected. Extremely low genetic variation within the invasive Fallopia taxa indicates that these taxa do not reproduce sexually in the region, suggesting that control efforts can be focused on preventing clonal spread. Climate warming may increase sexual reproduction of invasive Fallopia taxa in northern regions. The hermaphrodite F. × bohemica is a potential pollen source for the male‐sterile parental species. Targeted eradication of the hybrid can therefore reduce the risk of increased sexual reproduction under future warmer climate.  相似文献   

12.
The climate warming of the postglacial has strongly reduced the distribution of cold‐adapted species over most of Central Europe. Such taxa have therefore become extinct over most of the lowlands and shifted to higher altitudes where they have survived to the present day. The lycaenid butterfly Lycaena helle follows this pattern of former widespread distribution and later restriction to mountain areas such as the European middle mountains. We sampled 203 individuals from 10 populations representing six mountain ranges (Pyrenees, Jura, Massif Central, Morvan, Vosges and Ardennes) over the species' western distribution. Allozyme and microsatellite polymorphisms were analysed to study the genetic status of these highly fragmented populations. Both molecular marker systems revealed a strong genetic differentiation among the analysed populations, coinciding with the orographic structure and highly restricted gene flow among them. The large‐scale genetic differentiation is more pronounced in allozymes (FCT: 0.326) than in microsatellites (RCT: 0.113), but microsatellites show a higher resolution on the regional scale (RSC: 0.082) compared with allozymes (FSC: n.s.). For both analytical tools, we found private alleles occurring exclusively in a single mountain area. The highly fragmented and isolated occurrence of populations is supported by the distribution pattern of potentially suitable climate suggested by species distribution models. Model projections under two climate warming scenarios predict a decline of climatically suitable areas, which will result in the extinction of most of the populations showing unique genetic characteristics.  相似文献   

13.
The purpose of this study was to assess the relative roles of population size and geographic isolation in determining population-genetic structure. Using electrophoretic techniques to quantify allozymic variation at 16 genetic loci, we measured genic variation within and among 16 natural populations of the California fan palm (Washingtonia filifera). Genotypes were determined for every individual in each population so that parametric values rather than sample estimates for measures of genic variability were obtained. Palm populations displayed low levels of within-population variability. The proportion of polymorphic loci and observed heterozygosity were 0.098 and 0.009 per population, respectively. Population size displayed a significant positive correlation with proportion of polymorphic loci, but not with observed heterozygosity. Low levels of genetic differentiation among populations were demonstrated by an F-statistic analysis and the computation of genetic similarity values. A hierarchical analysis of gene diversity revealed that only about 2% of the total gene diversity in W. filifera resides as among-population diversity. Climatic and geological changes since the Pliocene have eliminated widespread palm populations, and the species is presently restricted to isolated locations around the Colorado Desert. Existing populations in southern California are either relicts or recent recolonizations resulting from the dispersal of seeds from a refugium population in Baja California, Mexico. The observed patterns of low within- and low among-population genic diversity seem most consistent with a recent colonization by fan palms. It is hypothesized that stochastic processes reduced levels of genic variability in this refugium population during its formation. Dispersal of seeds from this refugium into suitable habitats in the Colorado Desert would produce populations with low variability and high genetic similarity because of their common ancestry. However, low intrapopulation variability and genetic homogeneity across populations could be the product of uniform selection pressures favoring a narrow array of specialized genotypes in either relict or colonizing populations.  相似文献   

14.
Within a broad (>200 km wide) hybrid zone involving three parapatric species of Aesculus, we observed coincident clines in allele frequency for 6 of 14 electrophoretic loci. The cooccurrence of alleles characteristic of A. pavia, A. sylvatica, and A. flava was used to estimate genetic admixtures in 48 populations involving various hybrids between these taxa in the southeastern United States. High levels of allelic polymorphism (up to 40% greater than the parental taxa) were observed in hybrid populations and also in some populations bordering the hybrid zone. A detailed analysis of a portion of the hybrid zone involving A. pavia and A. sylvatica revealed a highly asymmetrical pattern of gene flow, predominantly from Coastal Plain populations of A. pavia into Piedmont populations of A. sylvatica. Computer simulations were used to generate expected genotypic arrays for parental, F1; and backcross individuals, which were compared with natural populations using a character index scoring system. In these comparisons, hybrid individuals could be distinguished from either parent, but F1 and backcross progeny could not be distinguished from each other. Most hybrid populations were found to include hybrids and one of the parental taxa, but never both parents. Three populations appeared to be predominantly hybrids with no identifiable parental individuals. Hybrids occurred commonly at least 150 km beyond the range of A. pavia, but usually not more than 25 km beyond the range of A. sylvatica. Introgression, suggested by genetically hybrid individuals and significant gene admixtures of two or more species in populations lacking morphological evidence of hybridization, may extend the hybrid zone further in both directions. The absence of one or both parental species from hybrid populations implies a selective disadvantage to parentals in the hybrid zone and/or that hybridization has occurred through long-distance gene flow via pollen, primarily from A. pavia into A. sylvatica. Long-distance pollen movement in plants may generate hybrid zones of qualitatively different structure than those observed in animals, where gene flow involves dispersal of individuals.  相似文献   

15.
16.
Buffalograss, Buchloë dactyloides, is widely distributed throughout the Great Plains of North America, where it is an important species for rangeland forage and soil conservation. The species consists of two widespread polyploid races, with narrowly endemic diploid populations known from two regions: central Mexico and Gulf Coast Texas. We describe and compare the patterns of allozyme and RAPD variation in the two diploid races, using a set of 48 individuals from Texas and Mexico (four population samples of 12 individuals each). Twelve of 22 allozyme loci were polymorphic, exhibiting 35 alleles, while seven 10-mer RAPD primers revealed 98 polymorphic bands. Strong regional differences were detected in the extent of allozyme polymorphism: Mexican populations exhibited more internal gene diversity (He= 0.20, 0.19) than did the Texan populations (He= 0.08, 0.06), although the number of RAPD bands in Texas (n= 62) was only marginally smaller than in Mexico (n= 68). F-statistics for the allozyme data, averaged over loci, revealed strong regional differentiation (mean FRT=+ 0.30), as well as some differentiation among populations within regions (mean FPR=+ 0.09). In order to describe and compare the partitioning of genetic variation for multiple allozyme and RAPD loci, we performed an Analysis of Molecular Variance (AMOVA). AMOVA for both allozyme and RAPD data revealed similar qualitative patterns: large regional differences and smaller (but significant) population differences within regions. RAPDs revealed greater variation among regions (58.4% of total variance) than allozymes (45.2%), but less variation among individuals within populations (31.9% for RAPDs vs. 45.2% for allozymes); the proportion of genetic variance among populations within regions was similar (9.7% for RAPDs vs. 9.6% for allozymes). Despite this large-scale concordance of allozyme and RAPD variation patterns, multiple correlation Mantel techniques revealed that the correlations were low on an individual by individual basis. Our findings of strong regional differences among the diploid races will facilitate further study of polyploid evolution in buffalograss.  相似文献   

17.
The intensification of agricultural land use over wide parts of Europe has led to the decline of semi-natural habitats, such as extensively used meadows, with those that remain often being small and isolated. These rapid changes in land use during recent decades have strongly affected populations inhabiting these ecosystems. Increasing habitat deterioration and declining permeability of the surrounding landscape matrix disrupt the gene flow within metapopulations. The burnet moth species Zygaena loti has suffered strongly from recent habitat fragmentation, as reflected by its declining abundance. We have studied its population genetic structure and found a high level of genetic diversity in some of the populations analysed, while others display low genetic diversity and a lack of heterozygosity. Zygaena loti was formerly highly abundant in meadows and along the skirts of forests. However, the species is currently restricted to isolated habitat remnants, which is reflected by the high genetic divergence among populations (F ST: 0.136). Species distribution modelling as well as the spatial examination of panmictic clusters within the study area strongly support a scattered population structure for this species. We suggest that populations with a high level of genetic diversity still represent the former genetic structure of interconnected populations, while populations with low numbers of alleles, high F IS values, and a lack of heterozygosity display the negative effects of reduced interconnectivity. A continuous exchange of individuals is necessary to maintain high genetic variability. Based on these results, we draw the general conclusion that more common taxa with originally large population networks and high genetic diversity suffer stronger from sudden habitat fragmentation than highly specialised species with lower genetic diversity which have persisted in isolated patches for long periods of time.  相似文献   

18.
Cyclical parthenogenesis allows study of the genetic and evolutionary characteristics of groups exhibiting both asexual and sexual reproduction. The cladoceran genus Daphnia contains species which vary with respect to the relative incidence of sexual reproduction; pond species tend to undergo sexual reproduction more regularly than species found in large lakes. Previous genetic studies have focused on pond populations, generating expectations about large-lake populations that have not been fully met by recent studies. The present study of the Palearctic species Daphnia galeata further examines the genetic structure of large-lake populations. Nine local populations, from lakes in northern Germany, are examined for genetic variation at seven enzyme loci. Populations exhibit similar allelic arrays and often similar allele frequencies at the five polymorphic loci; values of Nei's genetic distance (D) ranged from 0.002 to 0.239, with a mean of 0.084. FST values range from 0.012 to 0.257, and spatial autocorrelation coefficients range from -0.533 to 0.551, for the eight alleles analyzed. With few exceptions, within-population genotypic frequencies were in Hardy-Weinberg equilibrium. There was, however, significant heterogeneity in genotypic frequencies among populations. The number of coexisting clonal groups, as determined by three locus genotypes, is high within populations. Clonal groups are widely distributed among localities. The amount of genetic divergence observed among these large-lake populations is smaller than that previously observed among pond populations and suggests that different processes may be important in determining the genetic structure and subsequent phenotypic divergence of lake versus pond populations.  相似文献   

19.
Isoenzyme markers and polyacrylamide gel electrophoresis have been used to study the genetic structure of populations of Rhodiola iremelica Boriss. (Grassulaceae), a southern Ural endemic protected by the state and included in the Red Data Book of Bashkortostan Republic. A relatively large genetic variation at the species level has been found. The subdivision among populations (F ST = 0.115) is higher than in most cross-pollination angiosperms. No consistent pattern has been observed in the spatial distribution of its genetic variation. The relatively high differentiation among samples of R. iremelica characterized by small effective population sizes, may be accounted for by genetic drift, inbreeding, and a restricted gene flow. To preserve the population gene pool, in situ protection of the species in nature is insufficient. It seems advisable to create synthetic populations ex situ and reintroduce them into nature.  相似文献   

20.
The Hawaiian cricket genus Laupala (family Gryllidae) is one of several native genera of flightless crickets found in rain-forest habitat across the Hawaiian archipelago. Species in this genus are morphologically quite similar, but the songs produced by adult males are acoustically distinct. I examined the nature of song variation found within Laupala paranigra and between Laupala kohalensis and L. paranigra, both endemic to the island of Hawaii. Variation within and among species was most notable in the temporal structure of the song, as quantified by the pulse rate. The variation in pulse rate present in natural populations of L. paranigra bred true through the F1 laboratory generation, suggesting that the intraspecific variation in this species has a genetic basis. Interspecific hybridizations between L. kohalensis and L. paranigra successfully produced F1, F2, and backcross generations. Hybrid F1 males from reciprocal crosses sang with significantly different pulse rates, implicating an X chromosomal contribution to the phenotypic difference between these species. Interspecific patterns of inheritance are most consistent with a type-I genetic architecture. Polygenic inheritance of the interspecific pulse-rate variation was observed, and approximately eight genetic factors were estimated to underlie the difference in pulse rate between L. kohalensis and L. paranigra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号