首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE−/− mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE−/− mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti–IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22–stimulated SMC dedifferentiation into a synthetic phenotype.  相似文献   

5.
Background: Helicobacter pylori infection is associated with development of chronic inflammation and infiltration of immune cells into the gastric mucosa. As unconventional T‐lymphocytes expressing natural killer cell receptors are considered to play central roles in the immune response against infection, a study investigating their frequencies in normal and H. pylori‐infected gastric mucosa was undertaken. Materials and Methods: Flow cytometry was used to quantify T‐cells expressing the natural killer cell markers CD161, CD56, and CD94 in freshly isolated lymphocytes from the epithelial and lamina propria layers of gastric mucosa. Thirteen H. pylori‐positive and 24 H. pylori‐negative individuals were studied. Results: CD94+ T‐cells were the most abundant (up to 40%) natural killer receptor‐positive T‐cell population in epithelial and lamina propria layers of H. pylori‐negative gastric mucosa. CD161+ T‐cells accounted for about one‐third of all T‐cells in both compartments, but the lowest proportion were of CD56+ T‐cells. Compared with H. pylori‐negative mucosa, in H. pylori‐infected mucosa the numbers of CD161+ T‐cells were significantly greater (p = .04) in the epithelium, whereas the numbers of CD56+ T‐cells were lower (p = .01) in the lamina propria. A minor population (< 2%) of T‐cells in both mucosal layers of H. pylori‐negative subjects were natural killer T‐cells, and whose proportions were not significantly different (p > .05) to those in H. pylori‐infected individuals. Conclusions: The predominance, heterogeneity, and distribution of natural killer cell receptor‐positive T‐cells at different locations within the gastric mucosa reflects a potential functional role during H. pylori infection and warrants further investigation.  相似文献   

6.
CD226 is a costimulatory molecule that regulates immune cell functions in T cells, natural killer cells, and macrophages. Because macrophage-derived foam cell formation is a crucial factor contributing to the development of atherosclerosis, we aimed to evaluate the potential roles of CD226 in the pathogenesis of atherosclerosis. The effects of CD226 on atherosclerosis were investigated in CD226 and apolipoprotein E double-knockout (CD226?/? ApoE?/?) mice fed with a high-cholesterol atherogenic diet. CD226 expression in macrophages was evaluated using flow cytometry. Histopathological analysis was performed to evaluate the atherosclerotic lesions. Inflammatory cell infiltration was detected using immunofluorescence staining. Bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PEMs) were isolated from the mice and used to explore the mechanism in vitro. The in vivo results indicated that CD226 knockdown protected against atherosclerosis in ApoE?/? mice, evidenced by reduced plaque accumulation in the brachiocephalic artery, aortic roots, and main aortic tree. CD226 gene-deficient macrophages showed reduced foam cell formation under ox-low density lipoprotein stimulation compared with wild-type (WT) cells. CD226 deficiency also decreased the expression of CD36 and scavenger receptor (SR)-A (responsible for lipoprotein uptake) but increased the expression of ATP-binding cassette transporter A1 and G1 (two transporters for cholesterol efflux). Therefore, loss of CD226 hinders foam cell formation and atherosclerosis progression, suggesting that CD226 is a promising new therapeutic target for atherosclerosis.  相似文献   

7.
The aim of present study was to evaluate CD4+/CD8+ ratio and CD4+CD25hiFoxP3+ Tregs in GV patients with reference to their effect on disease onset and progression. Flow cytometry was used for determination of CD4+/CD8+ ratio and Tregs in 82 patients and 50 controls. CD8+ T‐cell counts were significantly higher in GV patients as compared with controls (p = 0.003). Active GV patients showed higher CD8+ T‐cell counts compared with stable GV patients (p = 0.001). The CD4+/CD8+ ratio decreased significantly in patients as compared with controls (p = 0.001). Moreover, the ratio in active GV patients significantly lowered as compared with stable GV patients (p = 0.002). Significant decrease in Treg cell percentage and counts in GV patients was observed compared with controls (p = 0.009, p = 0.008) with significant reduction in FoxP3 expression (p = 0.024). Treg cell percentage and counts were significantly decreased in active GV patients compared with stable GV patients (p = 0.007, p = 0.002). Our results suggest that an imbalance of CD4+/CD8+ ratio and natural Tregs in frequency and function might be involved in the T‐cell mediated pathogenesis of GV and its progression.  相似文献   

8.
Interleukin-7 receptor α chain (IL-7Rα)-derived signals are critical for normal T cell development, mature T cell homeostasis, and longevity of memory T cells. IL-7Rα expression in T cells is dynamically regulated at different developmental and antigen-responding stages. However, the molecular mechanism underlying the dynamic regulation is not completely understood. Here we describe generation of a bacterial artificial chromosome (BAC)-based reporter transgenic mouse strain, which contains 210 kb DNA sequence flanking the Il7r locus. We used in vitro validated EGFP reporter and insulator sequences to facilitate the reporter transgene expression. Consistent with endogenous IL-7Rα expression, the BAC transgene was expressed in mature T cells, a portion of natural killer cells but not in mature B cells. In the thymus, the EGFP reporter and endogenous IL-7Rα showed synchronized silencing in CD4+CD8+ double positive stage, were both upregulated in CD4+ or CD8+ single positive thymocytes, and both continued to be co-expressed in na?ve T cells in the periphery. Upon encountering antigen, the antigen-specific effector CD8+ T cells downregulated both endogenous IL-7Rα and the EGFP reporter, which were upregulated in synchrony in antigen-specific memory CD8 T cells. These results indicate that the BAC-EGFP transgene reports endogenous IL-7Rα regulation with high fidelity, and further suggest that the 210 kb sequence flanking the Il7r locus contains sufficient genetic information to regulate its expression changes in T lineage cells. Our approach thus represents a critical initial step towards systematic dissection of the cis regulatory elements controlling dynamic IL-7Rα regulation during T cell development and cellular immune responses.  相似文献   

9.
10.
It is now thought that atherosclerosis, although due to increased plasma lipids, is mainly the consequence of a complicated inflammatory process, with immune responses at the different stages of plaque development. Increasing evidence points to a significant role of Toll‐like receptor 4 (TLR4), a key player in innate immunity, in the pathogenesis of atherosclerosis. This study aimed to determine the effects on TLR4 activation of two reactive oxidized lipids carried by oxidized low‐density lipoproteins, the oxysterol 27‐hydroxycholesterol (27‐OH) and the aldehyde 4‐hydroxynonenal (HNE), both of which accumulate in atherosclerotic plaques and play a key role in the pathogenesis of atherosclerosis. Secondarily, it examined their potential involvement in mediating inflammation and extracellular matrix degradation, the hallmarks of high‐risk atherosclerotic unstable plaques. In human promonocytic U937 cells, both 27‐OH and HNE were found to enhance cell release of IL‐8, IL‐1β, and TNF‐α and to upregulate matrix metalloproteinase‐9 (MMP‐9) via TLR4/NF‐κB‐dependent pathway; these actions may sustain the inflammatory response and matrix degradation that lead to atherosclerotic plaque instability and to their rupture. Using specific antibodies, it was also demonstrated that these inflammatory cytokines increase MMP‐9 upregulation, thus enhancing the release of this matrix‐degrading enzyme by macrophage cells and contributing to plaque instability. These innovative results suggest that, by accumulating in atherosclerotic plaques, the two oxidized lipids may contribute to plaque instability and rupture. They appear to do so by sustaining the release of inflammatory molecules and MMP‐9 by inflammatory and immune cells, for example, macrophages, through activation of TLR4 and its NF‐κB downstream signaling.  相似文献   

11.
12.

Background

Adaptive immunity has been implicated in atherosclerosis in animal models and small clinical studies. Whether chronic immune activation is associated with atherosclerosis in otherwise healthy individuals remains underexplored. We hypothesized that activation of adaptive immune responses, as reflected by higher proportions of circulating CD4+ memory cells and lower proportions of naive cells, would be associated with subclinical atherosclerosis.

Methods and Findings

We examined cross-sectional relationships of circulating CD4+ naive and memory T cells with biomarkers of inflammation, serologies, and subclinical atherosclerosis in 912 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Circulating CD4+ naive cells were higher in women than men and decreased with age (all p-values <0.0001). European-Americans had higher levels of naive cells and lower levels of memory cells compared with African-Americans and Hispanic-Americans (all p-values ≤0.0005). Lower naive/higher memory cells were associated with interleukin-6 levels. In multivariate models, cytomegalovirus (CMV) and H. Pylori titers were strongly associated with higher memory and lower naive cells (all p-values <0.05). Higher memory cells were associated with coronary artery calcification (CAC) level in the overall population [β-Coefficient (95% confidence interval (CI))  = 0.20 (0.03, 0.37)]. Memory and naive (inversely) cells were associated with common carotid artery intimal media thickness (CC IMT) in European-Americans [memory: β =  0.02 (0.006, 0.04); naive: β = −0.02 (−0.004, −0.03)].

Conclusions

These results demonstrate that the degree of chronic adaptive immune activation is associated with both CAC and CC IMT in otherwise healthy individuals, consistent with the known role of CD4+ T cells, and with innate immunity (inflammation), in atherosclerosis. These data are also consistent with the hypothesis that immunosenescence accelerates chronic diseases by putting a greater burden on the innate immune system, and suggest the importance of prospective studies and research into strategies to modulate adaptive immune activation in chronic disease states such as atherosclerosis.  相似文献   

13.
Immunotherapeutic strategies are increasingly being explored as a method of enhancing anti-tumour immune responses in patients with acute myeloid leukaemia (AML). Regulatory CD4+ T cells (Tregs) suppress effector T and natural killer (NK) cells and therefore pose a potential challenge to the efficacy of immunotherapy. AML cells transduced with a lentivirus expressing CD80 (B7.1) and IL2 (LV-CD80/IL2) are capable of stimulating T and NK cell cytotoxicity in vitro. This study examines the effect of CD80/IL2 modified AML cells on Treg number and function. We report a significant increase in the number of CD8+ T cells (P = 0.046) CD3CD56+ NK cells (P = 0.028) and CD3+CD4+CD25highFoxp3+ Tregs (P = 0.043) following stimulation for 7 days with allogeneic LV-CD80/IL2 AMLs. In contrast, autologous LV-CD80/IL2 AML cell cultures provide a weaker stimulation with a lower number of CD8+ T cells (P = 0.011) and no change in NK cell or Treg numbers. However, an increase in cytotoxic CD8+ T cells and NK cells are detected following both allogeneic and autologous LV-CD80/IL2 stimulation as demonstrated by an increase in IFN-γ and CD107a expression. Despite the presence of increased numbers of Tregs with suppressive activity in a subset of cultures, increased lysis of unmodified AMLs was still achieved following allogeneic (day 0, 2.2%; day 7, 20.4%) and more importantly, autologous LV-CD80/IL2 culture in which AML patients had recently received intensive chemotherapy (day 0, 0%; day 7, 16%). Vaccination with LV-CD80/IL2 therefore provides a potential strategy to enhance anti-leukaemia immune responses without a concomitant stimulation of Treg-mediated inhibition of cytotoxic immunological responses.  相似文献   

14.
Although chronic infection with cytomegalovirus (CMV) is known to drive T lymphocytes toward a senescent phenotype, it remains controversial whether and how CMV can cause coronary heart disease (CHD). To explore whether CMV seropositivity or T‐cell populations associated with immunosenescence were informative for adverse cardiovascular outcome in the very old, we prospectively analyzed peripheral blood samples from 751 octogenarians (38% males) from the Newcastle 85+ study for their power to predict survival during a 65‐month follow‐up (47.3% survival rate). CMV‐seropositive participants showed a higher prevalence of CHD (37.7% vs. 26.7%, P = 0.030) compared to CMV‐seronegative participants together with lower CD4/CD8 ratio (1.7 vs. 4.1, P < 0.0001) and higher frequencies of senescence‐like CD4 memory cells (41.1% vs. 4.5%, P < 0.001) and senescence‐like CD8 memory cells (TEMRA, 28.1% vs. 6.7%, P < 0.001). CMV seropositivity was also associated with increased six‐year cardiovascular mortality (HR 1.75 [1.09–2.82], P = 0.021) or death from myocardial infarction and stroke (HR 1.89 [107–3.36], P = 0.029). Gender‐adjusted multivariate Cox regression analysis revealed that low percentages of senescence‐like CD4 T cells (HR 0.48 [0.32–0.72], P < 0.001) and near‐senescent (CD27 negative) CD8 T cells (HR 0.60 [0.41–0.88], P = 0.029) reduced the risk of cardiovascular death. For senescence‐like CD4, but not near‐senescent CD8 T cells, these associations remained robust after additional adjustment for CMV status, comorbidities, and inflammation markers. We conclude that CMV seropositivity is linked to a higher incidence of CHD in octogenarians and that senescence in both the CD4 and CD8 T‐cell compartments is a predictor of overall cardiovascular mortality as well as death from myocardial infarction and stroke.  相似文献   

15.
16.
The in vivo modified forms of low-density lipoprotein (LDL) are important for the formation of foam cells and as mediators of the immuno-inflammatory process involved in the progression of atherosclerosis. Electronegative LDL, LDL(-), is a LDL subfraction with pro-inflammatory properties that is present in human blood. To investigate possible atheroprotective effects, an anti-LDL(-) single-chain variable fragment (scFv) was expressed in the methylotrophic yeast Pichia pastoris and its activity was evaluated in vitro against macrophages and in experimental atherosclerosis in Ldlr-/- mice. The recombinant 2C7 scFv was produced in a yield of 9.5 mg of protein/L. The specificity and affinity of purified 2C7 scFv against LDL(-) was confirmed by ELISA. To assess the activity of 2C7 scFv on foam cell formation, RAW 264.7 macrophages were exposed to LDL(-) in the presence or absence of 2C7 scFv. The 2C7 scFv inhibited the uptake of LDL(-) by macrophages in a dose-dependent manner, and internalization of LDL(-) by these cells was found to be mediated by the CD36 and CD14 receptor. In addition, compared with untreated cells, lipid accumulation in macrophages was decreased, and the expression of Cd36, Tlr-4 and Cox-2 was downregulated in macrophages treated with 2C7 scFv. Importantly, compared with untreated mice, the treatment of Ldlr-/- mice with 2C7 scFv decreased the atherosclerotic lesion area at the aortic sinus. In conclusion, our data show that 2C7 scFv inhibits foam cell formation and atherosclerotic plaque development by modulating the expression of genes relevant to atherogenesis. These results encourage further use of this antibody fragment in the development of new therapeutic strategies that neutralize the pro-atherogenic effects of LDL(-).  相似文献   

17.

Background

It is increasingly evident that CD8+ T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8+CD25+ T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8+CD25+ T cells in experimental atherosclerosis were investigated in this study.

Methods and results

CD8+CD25+ T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8+CD25+ T cells from apoE(−/−) mice. Depletion of CD8+CD25+ from total CD8+ T cells rendered higher cytolytic activity of the remaining CD8+CD25 T cells. Adoptive transfer of CD8+CD25+ T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4+ T cells and significantly reduced atherosclerosis in recipient mice.

Conclusions

Our study has identified an athero-protective role for CD8+CD25+ T cells in experimental atherosclerosis.  相似文献   

18.
Background aims. After a myocardial infarction (MI) atherosclerosis is accelerated leading to destabilization of the atherosclerotic plaque. mesenchymal stromal cells are a promising therapeutic option for atherosclerosis. Previously, we demonstrated a novel stem cell delivery technique, with adipose stem cells coupled to microbubbles (i.e., StemBells) as therapy after MI. In this study, we aim to investigate the effect of StemBell therapy on atherosclerotic plaques in an atherosclerotic mouse model after MI. Methods. MI was induced in atherosclerotic Apolipoprotein E–deficient mice that were fed a high-fat Western diet. Six days post-MI, the mice received either 5?×?105/100 µL StemBells or vehicle intravenously. The effects of StemBell treatment on the size and stability of aortic root atherosclerotic plaques and the infarcted heart were determined 28 days post-MI via (immuno)histological analyses. Moreover, monocyte subtypes and lipids in the blood were studied. Results. StemBell treatment resulted in significantly increased cap thickness, decreased intra-plaque macrophage density and increased percentage of intra-plaque anti-inflammatory macrophages and chemokines, without affecting plaque size and serum cholesterol/triglycerides. Furthermore, StemBell treatment significantly increased the percentage of anti-inflammatory macrophages within the infarcted myocardium but did not affect cardiac function nor infarct size. Finally, also the average percentage of anti-inflammatory monocytes in the circulation was increased after StemBell therapy. Discussion. StemBell therapy increased cap thickness and decreased intra-plaque inflammation after MI, indicative of stabilized atherosclerotic plaque. It also induced a shift of circulating monocytes and intra-plaque and intra-cardiac macrophages towards anti-inflammatory phenotypes. Hence, StemBell therapy may be a therapeutic option to prevent atherosclerosis acceleration after MI.  相似文献   

19.
We show here that BALB/c mice inoculated with murine cytomegalovirus (MCMV) express viral antigens in the endothelial and smooth muscle cells of the aortic wall, and that accumulation of inflammatory cells in the aortic lumen, similar to that seen in early atherosclerotic lesions in humans, colocalizes with the site of virus antigen expression. Immunosuppression of the mice at the time of virus infection increased the expression of viral antigens and the size of early atherosclerotic lesions in the intima. The percentage of the low-density lipoprotein cholesterol (LDL-C), the major lipid contributor to atherosclerotic plaques, was significantly increased in the serum of MCMV-infected mice, whether or not the mice were fed a high cholesterol diet. Human cytomegalovirus (HCMV) significantly increased the esterified cholesterol component of the total cholesterol in a human arterial smooth muscle cell line infected in vitro with HCMV. These results suggest that CMV infection is involved in two of the major mechanisms that lead to development of atherosclerosis, i.e., immune injury and high LDL-C.  相似文献   

20.
Cathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr–/–) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3 months. When mice consume this diet for 6 months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r = –0.535, P < 0.0001) and LDL cholesterol (r = –0.559, P < 0.0001), but not with HDL cholesterol (P = 0.901) or triglycerides (P = 0.186). Such inverse correlations with total cholesterol (r = –0.504, P < 0.0001) and LDL cholesterol (r = –0.502, P < 0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号