首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased expression of the chemokine CX3CL1 and its sole receptor, CX3CR1 have been correlated with poor pancreatic cancer patient survival and time to recurrence, as well as with pancreatic perineural invasion. We have previously shown that metastasis of prostate and breast cancer is in part driven by CX3CL1, and have developed small molecule inhibitors against the CX3CR1 receptor that diminish metastatic burden. Here we ask if inhibition of this chemokine receptor affects the phenotype of PDAC tumor cells. Our findings demonstrate that motility, invasion, and contact-independent growth of PDAC cells all increase following CX3CL1 exposure, and that antagonism of CX3CR1 by the inhibitor JMS-17-2 reduces each of these phenotypes and correlates with a downregulation of AKT phosphorylation. These data suggest that PDAC tumor cell migration and growth, elements critical in metastatic progression, may susceptible to pharmacologic intervention.  相似文献   

2.

Background

Fractalkine/CX3CL1, a surface chemokine, binds to CX3CR1 expressed by different lymphocyte subsets. Since CX3CL1 has been detected in the germinal centres of secondary lymphoid tissue, in this study we have investigated CX3CR1 expression and function in human naïve, germinal centre and memory B cells isolated from tonsil or peripheral blood.

Methodology/Principal Findings

We demonstrate unambiguously that highly purified human B cells from tonsil and peripheral blood expressed CX3CR1 at mRNA and protein levels as assessed by quantitative PCR, flow cytometry and competition binding assays. In particular, naïve, germinal centre and memory B cells expressed CX3CR1 but only germinal centre B cells were attracted by soluble CX3CL1 in a transwell assay. CX3CL1 signalling in germinal centre B cells involved PI3K, Erk1/2, p38, and Src phosphorylation, as assessed by Western blot experiments. CX3CR1+ germinal centre B cells were devoid of centroblasts and enriched for centrocytes that migrated to soluble CX3CL1. ELISA assay showed that soluble CX3CL1 was secreted constitutively by follicular dendritic cells and T follicular helper cells, two cell populations homing in the germinal centre light zone as centrocytes. At variance with that observed in humans, soluble CX3CL1 did not attract spleen B cells from wild type mice. OVA immunized CX3CR1/ or CX3CL1/ mice showed significantly decreased specific IgG production compared to wild type mice.

Conclusion/Significance

We propose a model whereby human follicular dendritic cells and T follicular helper cells release in the light zone of germinal centre soluble CX3CL1 that attracts centrocytes. The functional implications of these results warrant further investigation.  相似文献   

3.
Epithelial-mesenchymal transformation (EMT) is associated with drug resistance in human lung adenocarcinoma cells, but its specific mechanism has not been clarified. In this study, we investigated the effect of miRNA-146b on EMT in cisplatin (DDP) resistant human lung adenocarcinoma cells and the corresponding mechanism. Cisplatin resistant (CR) human lung adenocarcinoma cells (A549/DDP and H1299/DDP) were established, and the EMT characteristics and invasion and metastasis ability of CR cells were determined by tumor cell-related biological behavior experiments. The role of miR-146b in EMT of CR cells was determined by in vitro functional test. The targeted binding of miR-146b to protein tyrosine phosphatase 1B (PTP1B) was verified by biological information and double luciferin gene reporting experiments. The effect of miR-146b on tumor growth and EMT phenotype in vivo was investigated by establishing the xenotransplantation mouse model. Compared with the control group, H1299/DDP and A549/DDP cells showed the enhanced EMT phenotypes, invasion and migration ability. Besides, miR-146b was lowly expressed in H1299/DDP and A549/DDP cells. More importantly, overexpressed miR-146b could specifically bind to PTP1B, thus inhibiting the EMT process and ultimately reducing CR in H1299/DDP and A549/DDP cells. Finally, overexpressed miR-146b observably inhibited tumor growth in xenograft model mice and inhibited the EMT phenotype of A549/DDP cells in vivo by regulating the expressions of EMT-related proteins. Overexpressed miR-146b could reverse the EMT phenotype of CR lung adenocarcinoma cells by targeting PTP1B, providing new therapeutic directions for CR of lung adenocarcinoma cells.  相似文献   

4.

Background

Little is known about the molecules that contribute to the growth of epithelial ovarian carcinomas (EOC), which remain the most lethal gynecological cancer in women. The chemokine Fractalkine/CX3CL1 has been widely reported to play a biologically relevant role in tumor growth and spread. We report here the first investigation of the expression and role of CX3CL1 in EOC.

Results

Epithelial cells from the surface of the ovary and the Fallopian tubes and from benign, borderline and malignant tumors all stained positive for CX3CL1. In tumor specimens from 54 women who underwent surgical treatment for EOC diagnosis, CX3CL1 immunoreactivity was unevenly distributed in epithelial tumor cells, and ranged from strong (33%) to absent (17%). This uneven distribution of CX3CL1 did not reflect the morphological heterogeneity of EOC. It was positively correlated with the proliferation index Ki-67 and with GILZ (glucocorticoid-induced leucine zipper), previously identified as an activator of the proliferation of malignant EOC cells. Hierarchical clustering analysis, including age at diagnosis, tumor grade, FIGO stage, Ki-67 index, CX3CL1, SDF-1/CXCL12 and GILZ immunostaining scores, distinguished two major clusters corresponding to low and high levels of proliferation and differing in terms of GILZ and CX3CL1 expression. GILZ overexpression in the carcinoma-derived BG1 cell line resulted in parallel changes in CX3CL1 products. Conversely, CX3CL1 promoted through its binding to CX3CR1 AKT activation and proliferation in BG1 cells. In a mouse subcutaneous xenograft model, the overexpression of GILZ was associated with higher expression of CX3CL1 and faster tumor growth.

Conclusion

Our findings highlight the previously unappreciated constitutive expression of CX3CL1 preceding tumorigenesis in ovarian epithelial cells. Together with GILZ, this chemokine emerges as a regulator of cell proliferation, which may be of potential clinical relevance for the selection of the most appropriate treatment for EOC patients.  相似文献   

5.
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.  相似文献   

6.
CX3CL1, a chemokine with transmembrane and soluble species, plays a key role in inflammation by acting as both chemoattractant and adhesion molecule. CX3CL1 is the only chemokine known to undergo constitutive internalization, raising the possibility that dynamic equilibrium between the endocytic compartment and the plasma membrane critically regulates the availability and processing of CX3CL1 at the cell surface. We therefore investigated how transmembrane CX3CL1 is internalized. Inhibition of dynamin using a nonfunctional allele or of clathrin using specific small interfering RNA prevented endocytosis of the chemokine in CX3CL1-expressing human ECV-304 cells. Perusal of the cytoplasmic domain of CX3CL1 revealed two putative adaptor protein-2 (AP-2)-binding motifs. Accordingly, CX3CL1 co-localized with AP-2 at the plasma membrane. We generated a mutant allele of CX3CL1 lacking the cytoplasmic tail. Deletion of the cytosolic tail precluded internalization of the chemokine. We used site-directed mutagenesis to disrupt AP-2-binding motifs, singly or in combination, which resulted in diminished internalization of CX3CL1. Although CX3CL1 was present in both superficial and endomembrane compartments, ADAM10 (a disintegrin and metalloprotease 10) and tumor necrosis factor-converting enzyme, the two metalloproteases that cleave CX3CL1, localized predominantly to the plasmalemma. Inhibition of endocytosis using the dynamin inhibitor, Dynasore, promoted rapid metalloprotease-dependent shedding of CX3CL1 from the cell surface into the surrounding medium. These findings indicate that the cytoplasmic tail of CX3CL1 facilitates its constitutive clathrin-mediated endocytosis. Such regulation enables intracellular storage of a sizable pool of presynthesized CX3CL1 that protects the chemokine from degradation by metalloproteases at the plasma membrane.Inflammation is marked by the migration of circulating leukocytes into sites of injury, a process that occurs via a series of coordinated interactions between leukocytes and endothelial or epithelial cells. Central to this process are chemokines, a family of low molecular weight proteins that can attract leukocytes bearing the complementary receptors. When engagement of the chemokine receptor occurs, the leukocyte becomes activated and is induced to firmly adhere to the inflamed endothelium. These initial steps culminate in diapedesis of the leukocyte across the endothelium and migration into the injured tissue. The local complement of chemokines elaborated is organ-specific and varies with the type of inflammation present. In addition, specific leukocyte subsets also bear distinct chemokine receptors. In this way, chemokines and chemokine receptors confer organ specificity to leukocyte migration and help to “fine-tune” the nature of the observed inflammatory response.Among the 40 chemokines identified so far, CX3CL1 is one of only two that have a transmembrane structure (1, 2). The chemokine domain of CX3CL1 binds to its complementary receptor, CX3CR1, through two distinct amino acid residues (3). The mucin stalk of CX3CL1 allows efficient presentation of the chemokine to circulating leukocytes that express CX3CR1, thereby allowing these leukocytes to be captured by the underlying endothelium (4, 5). CX3CL1 also possesses a cytoplasmic tail 37 amino acids in length. However, the specific functions of the cytoplasmic tail have been left completely unexplored.Accumulating evidence demonstrates a critical role for CX3CL1 in the pathogenesis of diverse inflammatory diseases, including atherosclerosis, systemic lupus erythematosus, and rejection of transplanted organs (615). Cell surface expression of CX3CL1 is known to be regulated by proteolytic cleavage, or shedding, from the plasma membrane (1618). Constitutive cleavage of CX3CL1 occurs at low levels and is mediated by ADAM10 (a disintegrin and metalloprotease 10) (17). In response to inflammatory stimulation with lipopolysaccharide or to protein kinase C activation using phorbol 12-myristate 13-acetate, proteolytic cleavage of CX3CL1 is markedly enhanced. Inducible cleavage of CX3CL1 is mediated by tumor necrosis factor-α converting enzyme (TACE; ADAM17),2 a related protease of the metzincin family (16, 18).In addition to proteolytic cleavage, surface expression of CX3CL1 is also regulated by subcellular trafficking. We recently demonstrated that cell surface CX3CL1 rapidly recycles to and from a specialized endocytic compartment, raising the possibility that the intracellular pool serves as a storage depot and that dynamic equilibrium between the endocytic compartment and the plasma membrane determines the availability and processing of transmembrane CX3CL1 (19). In the current study, we explored whether the unique cytoplasmic tail of CX3CL1 is important for this novel mode of regulation of the chemokine and whether it affects susceptibility of the chemokine to surface proteases. Our data suggest that plasmalemmal CX3CL1 undergoes constitutive clathrin-mediated endocytosis (CME), facilitating storage of an intracellular pool of chemokine that is protected from cell surface metalloproteases.  相似文献   

7.
目的:竹节参是人参属植物,和人参成分相似,前期研究其对肺癌具有一定的抑制作用,但作用机制不清,因此,本项目拟研究竹节参皂苷对人肺癌细胞系A549增殖、迁移和侵袭能力以及PTEN-PI3K-AKT信号通路的影响。方法:CCK8法测定不同浓度和不同作用时间的竹节参皂苷对A549存活率的影响,划痕实验测定细胞迁移能力,Transwell小室测定细胞的侵袭能力,ELISA试剂盒测定培养基上清中MMP-2和MMP-9水平的变化。Western blot测定PTEN、P-PI3K和P-Akt表达的变化。结果:竹节参皂苷对A549细胞增殖具有明显的抑制作用,呈浓度和时间依赖关系,与对照组比较具有统计学差异。同时,竹节参皂苷可以浓度依赖性的抑制细胞侵袭和转移,以及MMP-2和MMP-9细胞因子的分泌。Western blot结果表明竹节参皂苷可促进PTEN蛋白表达,抑制P-PI3K和P-Akt蛋白表达,采用PTEN的特异性抑制剂SF1670证实竹节参皂苷通过抑制PTEN发挥作用。结论:竹节参皂苷可抑制肺癌A549细胞增殖、迁移和侵袭,以及分泌蛋白MMP-2和MMP-9表达,其作用机制可能是通过调控PTEN抑制PI3K和Akt磷酸化,从而发挥抗癌作用。  相似文献   

8.
CX3CL1 is a unique chemokine that acts both as a transmembrane endothelial adhesion molecule and, upon proteolytic cleavage, a soluble chemoattractant for circulating leukocytes. The constitutive release of soluble CX3CL1 requires the interaction of its transmembrane species with the integral membrane metalloprotease ADAM10, yet the mechanisms governing this process remain elusive. Using single-particle tracking and subdiffraction imaging, we studied how ADAM10 interacts with CX3CL1. We observed that the majority of cell surface CX3CL1 diffused within restricted confinement regions structured by the cortical actin cytoskeleton. These confinement regions sequestered CX3CL1 from ADAM10, precluding their association. Disruption of the actin cytoskeleton reduced CX3CL1 confinement and increased CX3CL1–ADAM10 interactions, promoting the release of soluble chemokine. Our results demonstrate a novel role for the cytoskeleton in limiting membrane protein proteolysis, thereby regulating both cell surface levels and the release of soluble ligand.  相似文献   

9.
Lung adenocarcinoma is a common histologic type of lung cancer with a high death rate globally. Increasing evidence shows that long non‐coding RNA H19 (lncRNA H19) and CDH1 methylation are involved in multiple tumours. Here, we tried to investigate whether lncRNA H19 or CDH1 methylation could affect the development of lung adenocarcinoma. First, lung adenocarcinoma tissues were collected to detect CDH1 methylation. Then, the regulatory mechanisms of lncRNA H19 were detected mainly in concert with the treatment of overexpression of lncRNA H19, siRNA against lncRNA H19, overexpression of CDH1 and demethylating agent A‐5az in lung adenocarcinoma A549 cell. The expression of lncRNA H19 and epithelial‐mesenchymal transition (EMT)‐related factors as well as cell proliferation, sphere‐forming ability, apoptosis, migration and invasion were detected. Finally, we observed xenograft tumour in nude mice so as to ascertain tumorigenicity of lung adenocarcinoma cells. LncRNA H19 and methylation of CDH1 were highly expressed in lung adenocarcinoma tissues. A549 cells with silencing of lncRNA H19, overexpression of CDH1 or reduced CDH1 methylation by demethylating agent 5‐Az had suppressed cell proliferation, sphere‐forming ability, apoptosis, migration and invasion, in addition to inhibited EMT process. Silencing lncRNA H19 could reduce methylation level of CDH1. In vivo, A549 cells with silencing lncRNA H19, overexpression of CDH1 or reduced CDH1 methylation exhibited low tumorigenicity, reflected by the smaller tumour size and lighter tumour weight. Taken together, this study demonstrates that silencing of lncRNA H19 inhibits EMT and proliferation while promoting apoptosis of lung adenocarcinoma cells by inhibiting methylation of CDH1 promoter.  相似文献   

10.
Tribbles homolog 3 (TRB3) has been accounted for regulation of a few cell processes through interaction with other significant proteins. The molecular mechanisms underlying TRB3 in tumorigenesis in lung adenocarcinoma have not been entirely elucidated. The present study is aimed at determining the function and fundamental mechanisms of TRB3 in lung adenocarcinoma progression. TRB3 was highly expressed in A549 and H1299 cells and lung adenocarcinoma tissues compared with human bronchial epithelial cells (HBEpC) and adjacent normal lung tissues. Hypoxia significantly upregulated the expression of TRB3 protein in A549 and H1299 cells in a time-dependent way. Gene expression profiling interactive analysis data analysis indicated that patients with lung adenocarcinoma with excessive expression of TRB3 mRNA had fundamentally shorter survival time. TRB3 knockdown in A549 cells can inhibit cell proliferation and migration, and promote cell apoptosis. TRB3 knockdown reduced the expression of p-ERK and p-JNK, but did not affect the expression of p-P38 MAPK. TRB3 overexpression enhances the malignant transformation abilities of HBEpC such as cell proliferation, migration and colony formation, which could be reversed by U0126 and SP600125. TRB3 overexpression promotes the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) but was not affected by U0126 and SP600125. The results of coimmunoprecipitation experiments indicated that TRB3 binds directly to ERK and JNK. This study suggests that TRB3 has a potentially carcinogenic role in lung adenocarcinoma by binding to ERK and JNK and promoting the phosphorylation of ERK and JNK. TRB3 can be a possible therapeutic focus for lung adenocarcinoma.  相似文献   

11.
Our recent study reported that multidrug-resistant (MDR) human A549 lung cancer cells (A549RT-eto) with the elevated expression of NF-κB showed epithelial–mesenchymal transition (EMT), increasing spheroid formation and elevating the expression levels of stemness-related factors, including Oct4, Nanog, Sox2, Bmi1, and Klf4. Therefore, when new therapeutic agents targeting these malignant cancer cells were explored, we found that caged-xanthone (CX) isolated from the roots of Cratoxylum formosum ssp. pruniflorum diminished the expression of NF-κB, P-glycoprotein (P-gp) protein levels, cell migration and invasion, and sphere-forming ability of A549RT-eto cells. To address the role of NF-κB in these malignant cancer features, we treated A549RT-eto cells with NF-κB siRNAs in the present work. We found that the knockdown of NF-κB inhibited EMT and sphere formation. Furthermore, co-treatment with CX and NF-κB siRNA accelerated the death of apoptotic cells through the decrease of P-gp protein levels. These results suggest that NF-κB was involved in malignant cancer phenotypes and MDR in A549RT-eto cells. Taken together, our findings suggest that CX can be a potential therapeutic agent for the treatment of malignant tumor cells.  相似文献   

12.
The aim of this study was to investigate the effect of long noncoding RNA (lncRNA) urogenital carcinoma antigen 1 (UCA1) on drug resistance in A549/DDP cell and explore its underlying mechanism. The inhibition rate and IC 50 of DDP were detected in A549 and A549/DDP cells by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. The expression of lncRNA UCA1 was measured in A549 and A549/DDP cells by quantitative real-time polymerase chain reaction. The expressions of N-cadherin, E-cadherin, vimentin, and Snail were detected in A549 and A549/DDP cells by Western blot analysis. Results showed that the IC 50 of DDP was 16.20 ± 2.27 μmol/L and 69.72 ± 4.83 μmol/L in A549 and A549/ DDP cells, respectively. Compared with the A549 group, the expressions of N-cadherin, vimentin, and Snail was significantly upregulated in A549/DDP group, but E-cadherin was significantly downregulated. Compared with the shCon group, the abundance of N-cadherin, vimentin, and Snail was significantly downregulated in short hairpin RNA UCA1 (shUCA1) group, while E-cadherin was significantly upregulated. Cell migration and invasion were significantly suppressed and IC 50 was reversed to 16.20 ± 2.27 μmol/L in the shUCA1 group. Silencing lncRNA UCA1 inhibited the migration and invasion of A549/DDP cells and reversed the resistance of A549/DDP cells to DDP. The mechanism might be related to downregulation of epithelial-mesenchymal transition, which will provide a new direction for the treatment of non–small-cell lung cancer with cisplatin.  相似文献   

13.
14.
Accumulating evidence has revealed that various microRNAs are deregulated and involved in lung cancer development and metastasis. miR-210 is implicated in several cancer progression. However, the detailed biological function and role of miR-210 in lung adenocarcinoma remains unclear. Our current study was aimed to investigate the mechanism of miR-210 in lung adenocarcinoma progression. We observed that miR-210 was significantly upregulated in lung cancer cell lines (A549 and H1650) in comparison to BEAS-2B cells. In addition, we found that miR-210 was greatly elevated in lung adenocarcinoma tissues. Then, it was shown that overexpression of miR-210 was able to promote lung cancer cell proliferation and colony formation ability while inhibitors of miR-210 exhibited a reversed phenomenon. Subsequently, A549 and H1650 cell migration and invasion capacity were obviously restrained by miR-210 inhibition whereas induced by miR-210 mimics. Lysyl oxidase-like 4 (LOXL4), a member of the secreted copper-dependent amine oxidases has been found to be increased or decreased in different cancer types. Here, we confirmed that LOXL4 could serve as a downstream target of miR-210 and miR-210 promoted lung cancer progression via targeting LOXL4. In A549 and H1650 cells, knockdown of LOXL4 dramatically repressed lung cancer cell proliferation, migration, and invasion. In conclusion, our study implied that miR-210 might indicate a new perspective for lung cancer.  相似文献   

15.

Background

Tumor cell motility and invasion is governed by dynamic regulation of the cortical actin cytoskeleton. The actin-binding protein cortactin is commonly upregulated in multiple cancer types and is associated with increased cell migration. Cortactin regulates actin nucleation through the actin related protein (Arp)2/3 complex and stabilizes the cortical actin cytoskeleton. Cortactin is regulated by multiple phosphorylation events, including phosphorylation of S405 and S418 by extracellular regulated kinases (ERK)1/2. ERK1/2 phosphorylation of cortactin has emerged as an important positive regulatory modification, enabling cortactin to bind and activate the Arp2/3 regulator neuronal Wiskott-Aldrich syndrome protein (N-WASp), promoting actin polymerization and enhancing tumor cell movement.

Methodology/Principal Findings

In this report we have developed phosphorylation-specific antibodies against phosphorylated cortactin S405 and S418 to analyze the subcellular localization of this cortactin form in tumor cells and patient samples by microscopy. We evaluated the interplay between cortactin S405 and S418 phosphorylation with cortactin tyrosine phosphorylation in regulating cortactin conformational forms by Western blotting. Cortactin is simultaneously phosphorylated at S405/418 and Y421 in tumor cells, and through the use of point mutant constructs we determined that serine and tyrosine phosphorylation events lack any co-dependency. Expression of S405/418 phosphorylation-null constructs impaired carcinoma motility and adhesion, and also inhibited lamellipodia persistence monitored by live cell imaging.

Conclusions/Significance

Cortactin phosphorylated at S405/418 is localized to sites of dynamic actin assembly in tumor cells. Concurrent phosphorylation of cortactin by ERK1/2 and tyrosine kinases enables cells with the ability to regulate actin dynamics through N-WASp and other effector proteins by synchronizing upstream regulatory pathways, confirming cortactin as an important integration point in actin-based signal transduction. Reduced lamellipodia persistence in cells with S405/418A expression identifies an essential motility-based process reliant on ERK1/2 signaling, providing additional understanding as to how this pathway impacts tumor cell migration.  相似文献   

16.
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.  相似文献   

17.
目的:探讨核蛋白1(Nupr1)调控非小细胞肺癌细胞迁移、凋亡机制的研究。方法:肿瘤抑制剂盐酸素(salinomycin)不同时间处理非小细胞肺癌细胞A549后采用Western Blot法检测非小细胞肺癌细胞A549中Cleaved Caspase-3、Nupr1的蛋白表达;Transwell小室检测Nupr1基因沉默后非小细胞肺癌细胞A549细胞体外迁移、侵袭能力的变化;Western Blot法检测Nupr1沉默后非小细胞肺癌细胞A549 MMP-2、TIMP-1的蛋白表达;流式细胞仪检测Nupr1沉默后非小细胞肺癌细胞A549的凋亡情况。结果:与未经肿瘤抑制剂salinomycin处理对照组相比较,salinomycin处理后的非小细胞肺癌细胞A549中Nupr1蛋白表达量下降,Cleaved Caspase-3蛋白表达量升高,并且随着作用时间呈依赖关系。Nupr1-siRNA转染组的迁移能力相比对照组未转染组下降(64.4±7.2)%,Nupr1-siRNA转染组的侵袭能力相比对照组下降(58.7±7.3)%。与未转染Nupr1-siRNA对照组相比较,转染后TIMP-1的表达明显上调,而MMP-2的表达则明显下调。流式细胞仪检测结果显示Nupr1沉默后非小细胞肺癌细胞A549出现大量凋亡。结论:Nupr1基因沉默后通过上调TIMP-1的表达,下调MMP-2的表达降低肺癌A549细胞的侵袭和迁移能力,进而促进非小细胞肺癌细胞凋亡。  相似文献   

18.
Epithelial-to-mesenchymal transition (EMT), an important cellular process, occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Dioscin is a polyphenolic component isolated from Phyllanthus amarus, which exhibits a wide range of pharmacological and physiological activities, such as anti-tumor, anti-inflammatory, anti-obesity, anti-fungal, and anti-viral activities. However, the possible role of dioscin in the EMT is unclear. We investigated the suppressive effect of dioscin on the EMT. Transforming growth factor-beta 1 (TGF-β1) is known to induce EMT in a number of cancer cell types and promote lung adenocarcinoma migration and invasion. To verify the inhibitory role of dioscin in lung cancer migration and invasion, we investigated the use of dioscin as inhibitors of TGF-β1-induced EMT in A549 lung cancer cells in vitro. Here, we found that dioscin prominently increased expression of the epithelial marker E-cadherin and expression of the mesenchymal marker N-cadherin and Snail during the TGF-β1-induced EMT. In addition, dioscin inhibited the TGF-β1-induced increase in cell migration and invasion of A549 lung cancer cells. Also, dioscin remarkably inhibited TGF-β1-regulated activation of MMP-2/9, Smad2, and p38. Taken together, our findings provide new evidence that dioscin suppresses lung cancer migration, and invasion in vitro by inhibiting the TGF-β1-induced EMT.  相似文献   

19.
Lung cell migration is a crucial step for re-epithelialization that in turn is essential for remodelling and repair after lung injury. In the present paper we hypothesize that secreted ATX (autotaxin), which exhibits lysoPLD (lysophospholipase D) activity, stimulates lung epithelial cell migration through LPA (lysophosphatidic acid) generation-dependent and -independent pathways. Release of endogenous ATX protein and activity was detected in lung epithelial cell culture medium. ATX with V5 tag overexpressed conditional medium had higher LPA levels compared with control medium and stimulated cell migration through G(αi)-coupled LPA receptors, cytoskeleton rearrangement, phosphorylation of PKC (protein kinase C) δ and cortactin at the leading edge of migrating cells. Inhibition of PKCδ attenuated ATX-V5 overexpressed conditional medium-mediated phosphorylation of cortactin. In addition, a recombinant ATX mutant, lacking lysoPLD activity, or heat-inactived ATX also induced lung epithelial cell migration. Extracelluar ATX bound to the LPA receptor and integrin β4 complex on A549 cell surface. Finally, intratracheal administration of LPS (lipopolysaccharide) into the mouse airway induced ATX release and LPA production in BAL (bronchoalveolar lavage) fluid. These results suggested a significant role for ATX in lung epithelial cell migration and remodelling through its ability to induce LPA production-mediated phosphorylation of PKCδ and cortactin. In addition we also demonstrated association of ATX with the epithelial cell-surface LPA receptor and integrin β4.  相似文献   

20.
Sphingosine-1-phosphate (S1P), a serum-borne lipid mediator, was demonstrated to be a potent chemoattractant of endothelial cells. It was recently shown that the colocalization of cortactin and actin related protein 2/3 (Arp2/3) in the lamellipodia is critical to S1P-induced endothelial chemotaxis. In this report, we describe that S1P-stimulated cortactin translocation to the cell periphery to form lamellipodia is specifically mediated by the endothelial S1P1 G-protein coupled receptor, and is regulated by Gi-mediated Akt-dependent S1P1 receptor phosphorylation and Cdc42/Rac activation pathways. In contrast to Src-dependent fibroblast growth factor-induced cortactin translocation, tyrosine phosphorylation cascades are not required for S1P-mediated lamellipodia formation and chemotaxis. Furthermore, we also demonstrate that S1P signaling, via the Gi/Akt/S1P1 phosphorylation/Rac pathway, regulates the cortactin–Arp2/3 complex formation, which ultimately results in membrane ruffling, formation of the lamellipodia and endothelial migration.J.F. Lee and H. Ozaki contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号