首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Spatial processes could play an important role in density-dependent population regulation because the disproportionate use of poor quality habitats as population size increases is widespread in animal populations-the so-called buffer effect. While the buffer effect patterns and their demographic consequences have been described in a number of wild populations, much less is known about how dispersal affects distribution patterns and ultimately density dependence. Here, we investigated the role of dispersal in spatial density dependence using an extraordinarily detailed dataset from a reintroduced Mauritius kestrel (Falco punctatus) population with a territorial (despotic) breeding system. We show that recruitment rates varied significantly between territories, and that territory occupancy was related to its recruitment rate, both of which are consistent with the buffer effect theory. However, we also show that restricted dispersal affects the patterns of territory occupancy with the territories close to release sites being occupied sooner and for longer as the population has grown than the territories further away. As a result of these dispersal patterns, the strength of spatial density dependence is significantly reduced. We conclude that restricted dispersal can modify spatial density dependence in the wild, which has implications for the way population dynamics are likely to be impacted by environmental change.  相似文献   

2.
Hannu  Pöysä  Mauri  Pesonen 《Oikos》2003,102(2):358-366
We investigated whether the degree of exchange with other populations affects the occurrence of density-dependent regulation. We contrasted data from an Icelandic and a Finnish population of breeding wigeons ( Anas penelope ), the former population being more closed than the later. We looked for density dependence in time-series data and investigated whether breeding success is density dependent and plays a role in population dynamics and regulation. Time-series analysis did not reveal density-dependent regulation in either population. Nor did we find evidence of density-dependent breeding success in either population. However, population growth rate appeared to be strongly dependent on the breeding success in the previous year in the closed population but not in the open population. Our findings underline how important it is to link time-series analysis to the study of potential stabilizing mechanisms in order to understand population dynamics and regulation. We also suggest that it may be a difficult task to achieve sustainability in waterfowl harvesting, the theoretical basis of which is density-dependent population regulation.  相似文献   

3.
1. Populations of plants and animals typically fluctuate because of the combined effects of density-dependent and density-independent processes. The study of these processes is complicated by the fact that population sizes are typically not known exactly, because population counts are subject to sampling variance. Although the existence of sampling variance is broadly acknowledged, relatively few studies on time-series data have accounted for it, which can result in wrong inferences about population processes. 2. To increase our understanding of population dynamics, we analysed time series from six Central European populations of the migratory red-backed shrike Lanius collurio by simultaneously assessing the strength of density dependence, process and sampling variance. In addition, we evaluated hypotheses predicting effects of factors presumed to operate on the breeding grounds, at stopover sites in eastern Africa during fall and spring migration and in the wintering grounds in southern Africa. We used both simple and state-space formulations of the Gompertz equation to model population size. 3. Across populations and modelling approaches, we found consistent evidence for negative density-dependent population regulation. Further, process variance contributed substantially to variation in population size, while sampling variance did not. Environmental conditions in eastern and southern Africa appear to influence breeding population size, as rainfall in the Sahel during fall migration and in the south African wintering areas were positively related to population size in the following spring in four of six populations. In contrast, environmental conditions in the breeding grounds were not related to population size. 4. Our findings suggest negative density-dependent regulation of red-backed shrike breeding populations and are consistent with the long-standing hypothesis that conditions in the African staging and wintering areas influence population numbers of species breeding in Europe. 5. This study highlights the importance of jointly investigating density-dependent and density-independent processes to improve our understanding of factors influencing population fluctuations in space and time.  相似文献   

4.
Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density. We hypothesized that if density-dependent effects were manifested principally through intraspecific competition, body condition and fecundity of females would be lower in an area of high population density than in a low-density area. Thus, we collected data on physical condition and rates of pregnancy in each experimental population. Our manipulative experiment indicated that density-dependent feedbacks affected physical condition and reproduction of adult female elk. Age-specific pregnancy rates were lower in the high-density area, although there were no differences in pregnancy of yearlings or in age at peak reproduction between areas. Age-specific rates of pregnancy began to diverge at 2 years of age between the two populations and peaked at 6 years old. Pregnancy rates were most affected by body condition and mass, although successful reproduction the previous year also reduced pregnancy rates during the current year. Our results indicated that while holding effects of winter constant, density-dependent mechanisms had a much greater effect on physical condition and fecundity than density-independent factors (e.g., precipitation and temperature). Moreover, our results demonstrated effects of differing nutrition resulting from population density during summer on body condition and reproduction. Thus, summer is a critical period for accumulation of body stores to buffer animals against winter; more emphasis should be placed on the role of spring and summer nutrition on population regulation in large, northern herbivores.  相似文献   

5.
Previous work suggests that red environmental noise can lead to the spurious appearance of delayed density dependence (DDD) in unstructured populations regulated only by direct density dependence. We analysed the effect of noise reddening on the pattern of spurious DDD in several variants of the density-dependent age-structured population model. We found patterns of spurious DDD in structured populations with either density-dependent fertility or density-dependent survival of the first age class, inconsistent with predictions from unstructured population models. Moreover, we found that nonspurious negative DDD always emerges in populations with deterministic chaotic dynamics, regardless of population structure or the type of environmental noise. The effect of noise reddening in generating spurious DDD is often negligible in the chaotic region of population deterministic dynamics. Our findings suggest that differences in species' life histories may exhibit different patterns of spurious DDD (owing to noise reddening) than predicted by unstructured models.  相似文献   

6.
1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.  相似文献   

7.
In predator-free large herbivore populations, where density-dependent feedbacks occur at the limit where forage resources can no longer support the population, environmental catastrophes may play a significant role in population regulation. The potential role of fire as a stochastic mass-mortality event limiting these populations is poorly understood, so too the behavioural and physiological responses of the affected animals to this type of large disturbance event. During September 2005, a wildfire resulted in mortality of 29 (18% population mortality) and injury to 18, African elephants in Pilanesberg National Park, South Africa. We examined movement and herd association patterns of six GPS-collared breeding herds, and evaluated population physiological response through faecal glucocorticoid metabolite (stress) levels. We investigated population size, structure and projected growth rates using a simulation model. After an initial flight response post-fire, severely injured breeding herds reduced daily displacement with increased daily variability, reduced home range size, spent more time in non-tourist areas and associated less with other herds. Uninjured, or less severely injured, breeding herds also shifted into non-tourist areas post-fire, but in contrast, increased displacement rate (both mean and variability), did not adjust home range size and formed larger herds post-fire. Adult cow stress hormone levels increased significantly post-fire, whereas juvenile and adult bull stress levels did not change significantly. Most mortality occurred to the juvenile age class causing a change in post-fire population age structure. Projected population growth rate remained unchanged at 6.5% p.a., and at current fecundity levels, the population would reach its previous level three to four years post-fire. The natural mortality patterns seen in elephant populations during stochastic events, such as droughts, follows that of the classic mortality pattern seen in predator-free large ungulate populations, i.e. mainly involving juveniles. Fire therefore functions in a similar manner to other environmental catastrophes and may be a natural mechanism contributing to population limitation. Welfare concerns of arson fires, burning during "hot-fire" conditions and the conservation implications of fire suppression (i.e. removal of a potential contributing factor to natural population regulation) should be integrated into fire management strategies for conservation areas.  相似文献   

8.
1. Most wild animal populations are subjected to many perturbations, including environmental forcing and anthropogenic mortality. How population size varies in response to these perturbations largely depends on life-history strategy and density regulation. 2. Using the mid-continent population of redhead Aythya americana (a North American diving duck), we investigated the population response to two major perturbations, changes in breeding habitat availability (number of ponds in the study landscape) and changes in harvest regulations directed at managing mortality patterns (bag limit). We used three types of data collected at the continental scale (capture-recovery, population surveys and age- and sex ratios in the harvest) and combined them into integrated population models to assess the interaction between density dependence and the effect of perturbations. 3. We observed a two-way interaction between the effects on fecundity of pond number and population density. Hatch-year female survival was also density dependent. Matrix modelling showed that population booms could occur after especially wet years. However, the effect of moderate variation in pond number was generally offset by density dependence the following year. 4. Mortality patterns were insensitive to changes in harvest regulations and, in males at least, insensitive to density dependence as well. We discuss potential mechanisms for compensation of hunting mortality as well as possible confounding factors. 5. Our results illustrate the interplay of density dependence and environmental variation both shaping population dynamics in a harvested species, which could be generalized to help guide the dual management of habitat and harvest regulations.  相似文献   

9.
Abstract Knowledge of processes that drive the local population dynamics of coral-reef fishes is important for managing reef fisheries, and for using these species as models for understanding the ecology of demersal marine fishes in general. However, the reef-fish literature is replete with poorly defined concepts and vague hypotheses regarding the issue of population dynamics. Dichotomous arguments, such as whether or not recruitment drives population dynamics, are misdirected because they fail to incorporate several important concepts. First, changes in local population size are driven by four demographic rates (birth, death, immigration and emigration), all of which must be studied to understand population dynamics. Second, all populations that persist do so because at least one of these demographic rates operates in a density-dependent way that is both sufficiently strong and appropriately time-lagged. Therefore, identifying the source(s) of direct density dependence is critical for understanding the limits to variation in population size (i.e. population regulation). Third, regulation does not imply a simple point equilibrium in population size; density dependence in populations of reef fishes is bound to lie within a field of stochastic variation, and thus be difficult to detect. Since its formal origin in 1981, the ‘recruitment limitation’ hypothesis for explaining local population dynamics in reef fishes has undergone ambiguous changes in definition that threaten its usefulness. ‘Recruitment, ‘originally defined as the appearance of newly settled fish on a reef, more recently is often measured months after settlement, thus confounding pre- and post-settlement processes. ‘Limitation, ‘ which originally referred to recruitment being so low as to preclude local populations from reaching densities where resources were limiting, is more recently defined as an absence of any form of density dependence after settlement. The most effective means of testing whether post-settlement mortality is in fact density-independent is to examine patterns of mortality directly, rather than indirectly by interpreting the shape of the relationship between initial recruit density and subsequent adult density within a cohort (the recruit-adult function). Understanding the population dynamics of coral-reef fishes will require a more equitable focus on all four demographic rates, be they density dependent or not, as well as greater attention to identifying sources of density dependence. Such a pluralistic focus necessitates integrated studies of both pre- and post-settlement processes conducted at multiple spatial and temporal scales. For example, recent evidence suggests that density-dependent pre-dation on new recruits that have settled among reefs at different densities may prove to be an important source of local population regulation, especially via the aggregative response of transient piscivores.  相似文献   

10.
A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.  相似文献   

11.
Spatial patterns of site occupancy are commonly driven by habitat heterogeneity and are thought to shape population dynamics through a site-dependent regulatory mechanism. When examining this, however, most studies have only focused on a single vital rate (reproduction), and little is known about how space effectively contributes to the regulation of population dynamics. We investigated the underlying mechanisms driving density-dependent processes in vital rates in a Mauritius kestrel population where almost every individual was monitored. Different mechanisms acted on different vital rates, with breeding success regulated by site dependence (differential use of space) and juvenile survival by interference (density-dependent competition for resources). Although territorial species are frequently assumed to be regulated through site dependence, we show that interference was the key regulatory mechanism in this population. Our integrated approach demonstrates that the presence of spatial processes regarding one trait does not mean that they necessarily play an important role in regulating population growth, and demonstrates the complexity of the regulatory process.  相似文献   

12.
In this paper, we use a modeling approach to explore the population regulatory consequences of individual choices for where to breed in heterogeneous environments. In contrast to standard models, we focus on individuals that interact only indirectly through their choices of breeding sites (i.e., individuals preempt the occupation of a breeding site by others when they choose to breed there). We consider the consequences of individuals choosing breeding sites either randomly or sequentially from best to worst. Our analysis shows that average per-capita fecundity of the population is independent of the number of occupied breeding sites if individuals choose sites at random and that variation in average per-capita fecundity increases as population size declines. In contrast, if individuals choose breeding sites sequentially from highest to lowest quality, then as population size increases average per-capita fecundity declines and variation in average per-capita fecundity increases. Consequently, aggregate population-level demographic rates can change in ways that generate population regulation, even when change in population size does not change the demographic performance of any individual on any particular breeding site. However, such regulation occurs only when individuals make adaptive choices of where to breed. Because variation in average per-capita fecundity decreases when population size declines, populations regulated in a site-dependent manner should be much less susceptible to the vicissitudes of small population size than those which choose breeding sites at random.  相似文献   

13.
Density dependence of reproduction has generally been proposed to be caused by habitat heterogeneity and by the individual response of reproductive output. However, a further mechanism might generate density dependence of average reproductive rates. High density situations might be associated with a high proportion of first-season breeders which often show a principally lower reproductive performance. We tested for the existence of the latter mechanism as well as for density-dependent individual changes of reproductive effort in a population of European rabbits living in a homogeneous grassland habitat. The study was conducted over a period of eleven years. Overall, a strong relationship between mean reproductive rates and the breeding density of females was apparent. All necessary conditions for the presence of a density-dependent effect caused by age-dependent reproduction were fulfilled: Fluctuations of breeding density were paralleled by variations in the proportion of one-year-old females. These one-year-old, first-season breeders showed a consistently lower reproductive performance than older females, which might be caused by their lower body mass and their lower social rank. However, we also found strong evidence for density-dependent response of individual reproductive effort: Individual changes in fecundity over successive years were explained by changes in the breeding density of females. The results suggest that density dependence of reproduction in European rabbits is due to an interaction of age-dependent reproductive performance together with short-term fluctuations in breeding density, and a density-dependent, individual based response of reproductive rates. We further conclude that the lower reproductive performance of first-season breeders in age-structured animal populations may contribute substantially to interannual, and under particular circumstances to density-dependent variations of mean reproductive rates.  相似文献   

14.
Colonial breeding is characteristic of seabirds but nesting at high density has both advantages and disadvantages and may reduce survival and fecundity. African penguins (Spheniscus demersus) initiated breeding at Robben Island, South Africa in 1983. The breeding population on the island increased in the late 1990s and early 2000s before decreasing rapidly until 2010. Before the number breeding peaked, local nest density in the areas where the colony was initiated plateaued, suggesting that preferred nests sites were mostly occupied, and the area used by breeding birds expanded. However, it did not contract again as the population decreased, so that nesting density varied substantially. Breeding success was related positively to the prey available to the breeding birds and negatively to local nest density, particularly during the chick-rearing period, suggesting a density-dependence operating through social interactions in the colony, possibly exacerbated by poor prey availability when the breeding population was large. Although nest density at Robben Island was not high, nesting burrows, which probably reduce the incidence of aggressive encounters in the colony, are scarce and our results suggest that habitat alteration has modified the strength of density-dependent relationships for African penguins. Gaining a better understanding of how density dependence affects fecundity and population growth rates in colonial breeders is important for informing conservation management of the African penguin and other threatened taxa.  相似文献   

15.
Javier Balbontín  Miguel Ferrer 《Oikos》2008,117(7):1111-1114
The aim of this comment is to review the ecological issues concerning the role of individual and habitat heterogeneity as possible mechanisms explaining density-dependent fecundity in animal populations. Our intention is to discuss different approaches to determine whether or not studied populations are subjected to density-dependent processes and which mechanisms are involved. We show that because individual quality (e.g. measured in terms of age of breeding individuals) and territory quality can be correlated, untangling both effects on fecundity is frequently a difficult task. We discuss the misuse of statistical methods and other problems related to the specific characteristics of the studied populations that can have a strong influence on the conclusions reached by researchers working in this field.  相似文献   

16.
Tripleurospermum perforatum is an invasive weedy species which exhibits strong over-compensating density dependence. Interactions between density-dependent survival, probability of flowering and fecundity were modelled and their impact on the population dynamics were examined. When only fecundity was density-dependent, the dynamics were similar to those observed in the model containing all three density-dependent terms. Density-dependent survival was a stabilizing process when acting in combination with density-dependent fecundity and probability of flowering; removing density-dependent survival from the model produced two-point cycles. The addition of a seed bank was also stabilizing. Simulations of control strategies at different life-history stages indicated that full control would be difficult due to the strong over-compensating density dependence, with severe reductions in fecundity and late season survival necessary in order to reduce equilibrium seed density and biomass.  相似文献   

17.
All else being equal, inversely density-dependent (IDD) mortality destabilizes population dynamics. However, stability has not been investigated for cases in which multiple types of density dependence act simultaneously. To determine whether IDD mortality can destabilize populations that are otherwise regulated by directly density-dependent (DDD) mortality, I used scale transition approximations to model populations with IDD mortality at smaller “aggregation” scales and DDD mortality at larger “landscape” scales, a pattern observed in some reef fish and insect populations. I evaluated dynamic stability for a range of demographic parameter values, including the degree of compensation in DDD mortality and the degree of spatial aggregation, which together determine the relative importance of DDD and IDD processes. When aggregation-scale survival was a monotonically increasing function of density (a “dilution” effect), dynamics were stable except for extremely high levels of aggregation combined with either undercompensatory landscape-scale density dependence or certain values of adult fecundity. When aggregation-scale survival was a unimodal function of density (representing both “dilution” and predator “detection” effects), instability occurred with lower levels of aggregation and also depended on the values of fecundity, survivorship, detection effect, and DDD compensation parameters. These results suggest that only in extreme circumstances will IDD mortality destabilize dynamics when DDD mortality is also present, so IDD processes may not affect the stability of many populations in which they are observed. Model results were evaluated in the context of reef fish, but a similar framework may be appropriate for a diverse range of species that experience opposing patterns of density dependence across spatial scales.  相似文献   

18.
It is generally assumed that fish populations are regulated primarily in the juvenile (pre-recruit) phase of the life cycle, although density dependence in growth and reproductive parameters within the recruited phase has been widely reported. Here we present evidence to suggest that density-dependent growth in the recruited phase is a key process in the regulation of many fish populations. We analyse 16 fish populations with long-term records of size-at-age and biomass data, and detect significant density-dependent growth in nine. Among-population comparisons show a close, inverse relationship between the estimated decline in asymptotic length per unit biomass density, and the long-term average biomass density of populations. A simple population model demonstrates that regulation by density-dependent growth alone is sufficient to generate the observed relationship. Density-dependent growth should be accounted for in fisheries' assessments, and the empirical relationship established here can provide indicative estimates of the density-dependent growth parameter where population-specific data are lacking.  相似文献   

19.
The relative contribution of density-dependent regulation and environmental stochasticity to the temporal dynamics of animal populations is one of the central issues of ecology. In insects, the primary role of the latter factor, typically represented by weather patterns, is widely accepted. We have evaluated the impact of density dependence as well as density-independent factors, including weather and mowing regime, on annual fluctuations of butterfly populations. As model species, we used Maculinea alcon and M. teleius living in sympatry and, consequently, we also analysed the effect of their potential competition. Density dependence alone explained 62 and 42% of the variation in the year-to-year trends of M. alcon and M. teleius, respectively. The cumulative Akaike weight of models with density dependence, which can be interpreted as the probability that this factor should be contained in the most appropriate population dynamics model, exceeded 0.97 for both species. In contrast, the impacts of inter-specific competition, mowing regime and weather were much weaker, with their cumulative weights being in the range of 0.08–0.21; in addition, each of these factors explained only 2–5% of additional variation in Maculinea population trends. Our results provide strong evidence for density-dependent regulation in Maculinea, while the influence of environmental stochasticity is rather minor. In the light of several recent studies on other butterflies that detected significant density-dependent effects, it would appear that density-dependent regulation may be more widespread in this group than previously thought, while the role of environmental stochasticity has probably been overestimated. We suggest that this misconception is the result of deficiencies in the design of most butterfly population studies in the past, including (1) a strong focus on adults and a neglect of the larval stage in which density-dependent effects are most likely to occur; (2) an almost exclusive reliance on transect count results that may confound the impact of environmental stochasticity on butterfly numbers with its impact on adult longevity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Because environmental filters are temporally and spatially heterogeneous, there often is a lack of significant relationship between the spatial patterns of successive life stages in plant populations. In this study, we determined the spatiotemporal relationships between different life stages in two populations of an annual plant of the deciduous forests of eastern North America, Floerkea proserpinacoides. Demographic surveys were done over a 4-yr period, and experiments were performed in the field and under controlled conditions to test for the effects of various environmental factors on population dynamics. There was a general lack of relationship between the spatial patterns of seed bank and seedling density, and a lack of similarity between their spatial correlograms. This was related mostly to the effects of spatially variable environmental filters operating on germination and emergence. However, environmental filters acting on plant survival were stable through time and contributed to stabilize the density and spatial patterns of the populations. Despite density-dependent presenescence mortality, spatial patterns of seedlings and mature individuals were similar and their correlograms were alike, suggesting that mortality did not fully compensate for density. Estimated fecundity was negatively correlated with population density over the study period. Although flower production started only 2-3 wk after emergence, seed maturation mostly occurred at the end of the life cycle, just before the onset of plant senescence. Yet, individual fecundity was low for an annual plant, i.e., 3.0 ± 0.5 mature seeds/plant (mean ± 1 SE). Seed predation by vertebrates was not significant. Low soil moisture had little effect on the total number of seeds germinating, although it slowed down the germination process. In quadrats where leaf litter was experimentally doubled, seedling emergence was lower than in control quadrats; in quadrats where leaf litter was completely removed, emergence did not differ from that in control quadrats. Susceptibility to drought stress was higher for seedlings than for mature plants. Although the species does not maintain a long-term persistent soil seed bank, other factors, such as density-dependent fecundity and autogamy, may temper population fluctuations through time and reduce the probability of local extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号