首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
When intact spinach chloroplasts were supplied with [32P]Pi, stromal protein phosphorylation was found to occur in the dark. On illumination the thylakoid protein kinase was activated and the amount of label found in thylakoid proteins quickly exceeded that incorporated into stromal protein, such that the latter was found to account for only 10-15% of the total radioactivity bound to chloroplast proteins after 5 min illumination. The rate of phosphorylation of stromal polypeptides was unchanged by light. After SDS/polyacrylamide-gel electrophoresis, more than 15 labelled polypeptides of stromal origin were observed. A polypeptide with an Mr of approx. 70 000 had the highest specific activity of labelling. Both the large and small subunits of the ribulose-1,5-bisphosphate carboxylase were phosphorylated. The level of phosphorylation of stromal protein was increased by CO2 fixation in intact chloroplasts. This increase was not observed in the absence of NaHCO3 or in the presence of the phosphoribulokinase inhibitor DL-glyceraldehyde. These effects appeared to be largely due to changes in the phosphorylation state of the large and small subunits of ribulose-1,5-bisphosphate carboxylase. Studies with the reconstituted chloroplast system showed that the thylakoid protein kinase(s) played no part in the phosphorylation of stromal protein. The rate and level of phosphorylation of stromal protein was unaffected by the activation state of the thylakoid protein kinase and was unchanged when thylakoids were omitted from the reaction medium. The phosphorylation of stromal proteins is therefore catalysed by a discrete soluble protein kinase.  相似文献   

2.
The proteolytic degradation of unassembled small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase and of the δ-subunit of the coupling factor of photophosphorylation CF1 were analyzed and compared in vitro in the presence of stroma or membrane preparations from ribosome-deficient plastids isolated from 32°C-grown rye leaves (Secale cereale L.). Extracts obtained from 70S ribosome-deficient rye leaves after radioactive labeling were used as substrate source for the unassembled polypeptides. Soluble stroma as well as membrane preparations from isolated plastids contained proteolytic activities catalyzing the degradation of both the small subunits of ribulose-1,5-bisphosphate carboxylase and CF1in vitro. Maximal in vitro degradation was observed at pH 2–3 for the unassembled small subunits, but at pH 6–7 for the purified holoprotein of ribulose-1,5-bisphosphate carboxylase, and at pH 6.0 for unassembled CF1-δ. Degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase at pH 3.0 was stimulated by Cu2+ but not by Ca2+, Mg2+ or ATP. At pH 3.0 the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase was not inhibited by various protease inhibitors but was even stimulated. At pH 7.0 its degradation was inhibited by HgCl2 and diazoacetyl nor-leucine methyl ester + Cu-acetate. The degradation of CF1-δ was markedly inhibited by phenylmethylsulphonyl fluoride (PMSF) and to a lesser extent by 1,10-phenanthroline. According to present results different proteolytic systems appear to be involved in the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase and of unassembled CF1-δ.  相似文献   

3.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

4.
Intact chloroplasts isolated from spinach were illuminated in the absence of inorganic phosphate (Pi) or with optimum concentrations of Pi added to the reaction medium. In the absence of Pi photosynthesis declined after the first 1–2 min and was less than 10% of the maximum rate after 5 min. Export from the chloroplast was inhibited, with up to 60% of the 14C fixed being retained in the chloroplast, compared to less than 20% in the presence of Pi. Despite the decreased export, chloroplasts depleted of Pi had lower levels of triose phosphate while the percentage of total phosphate in 3-phosphoglycerate was increased. Chloroplast ATP declined during Pi depletion and reached dark levels after 3–4 min in the light without added Pi. At this point, stromal Pi concentration was 0.2 mM, which would be limiting to ATP synthesis. Addition of Pi resulted in a rapid burst of oxygen evolution which was not initially accompanied by net CO2 fixation. There was a large decrease in 3-phosphoglycerate and hexose plus pentose monophosphates in the chloroplast stroma and a lesser decrease in fructose-1,6-bisphosphate. Stromal levels of triose phosphate, ribulose-1,5-bisphosphate and ATP increased after resupply of Pi. There was an increased export of 14-labelled compounds into the medium, mostly as triose phosphate. Light activation of both fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase was decreased in the absence of Pi but increased following Pi addition.It is concluded that limitation of Pi supply to isolated chloroplasts reduced stromal Pi to the point where it limits ATP synthesis. The resulting decrease in ATP inhibits reduction of 3-phosphoglycerate to triose phosphate via mass action effects on 3-phosphoglycerate kinase. The lack of Pi in the medium also inhibits export of triose phosphate from the chloroplast via the phosphate transporter. Other sites of inhibition of photosynthesis during Pi limitation may be located in the regeneratige phase of the reductive pentose phosphate pathway.Abbreviations FBP Fructose-1,6-bisphosphate - FBPase Fructose-1,6-bisphosphatase - MP Hexose plus pentose monophosphates - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - TP Triose Phosphate  相似文献   

5.
For purifying carboxysomes of Thiobacillus neapolitanus an isolation procedure was developed which resulted in carboxysomes free from whole cells, protoplasts and cell fragments. These purified carboxysomes are composed of 8 proteins and at the most of 13 polypeptides. The two most abundant proteins which make up more than 60% of the carboxysomes, are ribulose-1,5-bisphosphate carboxylase and a glycoprotein with a molecular weight of 54,000. The shell of the carboxysomes consists of four glycoproteins, one also with a molecular weight of 54,000. The other proteins are present in minor quantities. Ribulose-1,5-bisphosphate carboxylase is the only enzyme which could be detected in the carboxysomes and 3-phosphoglycerate was the only product formed during incubation with ribulose-1,5-diphosphate and bicarbonate. The supernatant of a broken and centrifuged carboxysome suspension contained the large subunit of ribulose-1,5-bisphosphate carboxylase. The small subunit of ribulose-1,5-bisphosphate carboxylase was found in the pellet together with the shell proteins which indicates that the small subunit of ribulose-1,5-bisphosphate carboxylase is connected to the shell.Abbreviations RuBisCO ribulose-1,5-bisphosphate carboxylase - PMSF phenylmethylsulfonyl fluoride - PAA gelectrophoresis, polyacrylamide gelelectrophoresis - SDS sodium dodecyl sulphate - CIE crossed immunoelectrophoresis - IEF isoelectric focusing  相似文献   

6.
S. Boag  A. R. Portis Jr. 《Planta》1985,165(3):416-423
The levels of stromal photosynthetic intermediates were measured in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Stressed chloroplasts showed slower rates of metabolite accumulation upon illumination than controls. Relative to other metabolites sedoheptulose-1,7-bisphosphate (SBP) and fructose-1,6-bisphosphate (FBP) accumulated in the stroma in the stressed treatments. Under these conditions 3-phosphoglycerate (3-PGA) efflux to the medium was restricted. Chloroplasts previously incubated with [32P]KH2PO4 and [32P]dihydroxyacetone phosphate ([32P]DAP) in the dark were characterized by very high FBP and SBP levels prior to illumination. Metabolism of these pools upon illumination increased with increasing pH of the medium but was consistently inhibited in osmotically stressed chloroplasts. The responses of stromal FBP and SBP pools under hypertonic conditions are discussed in terms of both inhibited light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37), and likely increases in stromal ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) active-site concentrations.Abbreviations and symbols DAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - s osmotic potential  相似文献   

7.
A protein kinase activity responsible for the in vitro phosphorylation of at least six endogenous polypeptides including the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) is present in the stroma (3000 X g supernatant, S30) of spinach chloroplasts. The phosphorylation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit is strongly enhanced when sodium fluorure is used as a protein phosphatase inhibitor. Phosphorylation occurs on threonine and serine residues. The protein kinase involved is not Ca2+-dependent. There is also evidence for a protein phosphatase activity which suggests a coupled regulation by a phosphorylation-dephosphorylation process. The phosphorylating activity is drastically reduced when S30 is prepared from leaves harvested after a dark period. Phosphorylation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit is not related to its own synthesis. The in vitro phosphorylation of the glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) is also demonstrated.  相似文献   

8.
9.
N. W. Kerby  L. V. Evans 《Planta》1978,142(1):91-95
In order to isolate high yields of pyrenoids from the brown alga Pilayella littoralis it is necessary to pretreat them with 0.1% HgCl2 in sea water for 3 h. Without this pretreatment there is a substantial loss of pyrenoid ground substance and yields are low. Pyrenoid fractions of high purity have been obtained using silica sol gradients. A partial characterization has shown the pyrenoid to be proteinaceous and lacking chlorophyll. SDS polyacrylamide gel electrophoresis has shown that the majority of protein present is accounted for by two polypeptides which resemble the large and small subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39).Abbreviations DTT dithiothreitol - HEPES N-2-hydroxyethylniperazine N1-2-ethanesulfonic acid - PEG polyethylene glycol - PVPP polyvinylpolypyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate  相似文献   

10.
Isolation and incubation conditions were established for Petunia hybrida chloroplasts capable of performing in vitro protein and RNA synthesis. Under these conditions, chloroplasts from leaves as well as from the non-photoautotrophic mutant green cell culture AK-2401 are able to incorporate labeled amino acids into polypeptides. Intact chloroplasts can use light as an energy source; photosynthetically-inactive chloroplasts require the addition for ATP for this protein synthesis. Sodium dodecylsulphate polyacrylamide slab gel electrophoresis shows that in isolated leaf chloroplasts at least twenty-five radioactive polypeptide species are synthesized. The three major products synthesized have molecular weights of 52,000, 32,000 and 17,000. Coomassie brilliant-bluestained polypeptide patterns from plastids isolated from the mutant green cell culture AK-2401 differ considerably from those obtained from leaf chloroplasts. The pattern of radioactive polypeptides synthesized in these isolated cell culture plastids also shows differences. These results indicate that the difference in developmental stage observed between plastids from the cell culture AK-2401 and leaves is reflected in an altered expression of the chloroplast DNA.Abbreviations CAP D-threo-chloramphenicol - 2,4-D 2,4-dichlorophenoxyacetic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecylsulphate  相似文献   

11.
The exchange properties of the activator CO2 of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase were characterized both in vitro with the purified enzyme, and in situ within isolated chloroplasts. Carboxyarabinitol-1,5-bisphosphate, a proposed reaction intermediate analog for the carboxylase activity of the enzyme, was used to trap the activator CO2 on the enzyme both in vitro and in situ. Modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in intact chloroplasts during a light/dark cycle was associated with a similar modulation in carboxyarabinitol-1,5-bisphosphate-trapped CO2. The exchange kinetics of the activator CO2 were monitored by activation of the enzyme to steady state in the presence of 12CO2, followed by addition of 14CO2 and determination of the amount of labeled CO2 trapped on the enzyme by carboxyarabinitol-1,5-bisphosphate. Rate constants (Kobs) for exchange with both the purified enzyme (0.45 min−1) and in illuminated chloroplasts (0.18 min−1) were comparable to the observed rate constants for enzyme activation under the two conditions. A similar exchange of the activator CO2 was not observed in chloroplasts in the dark. Kinetic analysis of the exchange properties of the purified enzyme were consistent with an equilibrium between active and inactive forms of the enzyme during steady state activation.  相似文献   

12.
Howard Thomas 《Planta》1982,154(3):212-218
Soluble and thylakoid membrane polypeptides from senescing leaf tissue of Rossa, a normal yellowing Festuca pratensis genotype, were fractionated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and compared with those of the non-yellowing mutant Bf 993. Subunits of ribulose-1,5-bisphosphate carboxylase were the major soluble polypeptides and declined to low levels in senescing leaves of both genotypes. The major thylakoid polypeptides were those associated with the chlorophyllprotein complexes CPI and CPII. The levels of all thylakoid polypeptide species fell during senescence of Rossa leaf tissue but Bf993 lamellae retained CPI, CPII and a number of other hydrophobic low molecular weight polypeptides. The increasing hydrophobicity and decreasing protein complement of Bf 993 thylakoids were reflected in a fall in membrane density from 1.16 to 1.13 g cm-3 over 8 d of senescence and a decline in the extractability of chlorophyll-containing membranes in the same period. In Bf993 the molar ratio of chlorophyll to hydrophobic membrane protein increased from 92 at day 0 to 296 at day 8. In the same time the ratio for Rossa increased from 88 to 722 and 8 d-senesced Rossa tissue yielded less than 2% of the solvent-soluble protein it contained at day 0 as compared with 24% for the protein of Bf993. These results are discussed in relation to the nature of the non-yellowing lesion.Abbreviations RuBPC ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - EDTA ethylenediaminetetraacetate - SDS sodium dodecyl sulphate - CP chlorophyll-protein complex  相似文献   

13.
Stromal ribosomes and those bound to thylakoid membranes were prepared from intact spinach chloroplasts which were purified on Percoll gradients. The products of read-out translation of these ribosomes supplemented with an Escherichia coli extract were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Striking similarity was found between the polypeptides labeled in the read-out translation of the chloroplastic ribosomes and those synthesized in isolated chloroplasts. Among the polypeptides translated on thylakoid-bound ribosomes, apoprotein of chlorophyll-protein complex I, alpha and beta subunits of coupling factor 1, and 32,000-Da membrane polypeptide were identified from their mobility on the polyacrylamide gel. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and other several stromal proteins were translated exclusively from stromal ribosomes. However, when the translation was programmed in cell-free systems from either E. coli, wheat germ, or rabbit reticulocytes by RNAs isolated separately from stroma and thylakoids, no qualitative difference was found between the products from those RNAs. These results suggest that thylakoid-bound ribosomes are the main sites of synthesis of thylakoid proteins and stromal-free ribosomes are that of stromal proteins, and that thylakoids and stroma contain mRNAs for the stromal and the thylakoid proteins, respectively, in a form not functioning in the chloroplasts.  相似文献   

14.
Toc75 is an outer envelope membrane protein of chloroplasts. It is unusual among the outer membrane proteins in that its precursor form has a bipartite transit peptide. The N-terminal portion of the Toc75 transit peptide is sufficient to target the protein to the stromal space of chloroplasts. We prepared a 45 amino-acid peptide containing the stromal targeting domain of the Toc75 transit peptide in Escherichia coli, using the intein-mediated system, and purified it by reverse-phase HPLC. Its identity was confirmed by N-terminal amino-acid sequencing and matrix assisted laser desorption ionization mass spectrometry. In monolayer experiments, the peptide inserted into the chloroplastic membrane lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol and into a nonchloroplastic lipid phosphatidylethanolamine. However, it did not insert into other chloroplastic lipids, such as mono- and digalactosyl diacylglycerol, and phosphatidylcholine. Furthermore, the peptide significantly inhibited binding of radiolabeled precursors of Toc75 and the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase to intact chloroplasts as effectively as did a bacterially produced precursor of the small subunit of 1,5-bisphosphate carboxylase/oxygenase. The peptide also inhibited import of radiolabeled precursors into isolated chloroplasts, however, to a lesser extent than did nonlabeled precursor of the small subunit of 1,5-bisphosphate carboxylase/oxygenase.  相似文献   

15.
Samuel Roulin  Urs Feller 《Planta》1998,205(2):297-304
Intact chloroplasts were isolated from mature pea (Pisum sativum L.) leaves in order to study the degradation of several stromal proteins in organello. Changes in the abundances of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), glutamine synthetase (EC 6.3.1.2) and ferredoxin-dependent glutamine:α-ketoglutarate aminotransferase (glutamate synthase; EC 1.4.7.1) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Coomassie-staining of the gels or immunoblotting using specific antibodies for the different enzymes. Degradation of several stromal proteins was strongly stimulated when intact chloroplasts were incubated in the light in the presence of dithiothreitol. Since free radicals may artificially accumulate in the chloroplast under such conditions and interfere with the stability of stromal proteins, the general relevance of these processes remains questionable. In the absence of light, proteolysis proceeded slowly in isolated chloroplasts and was not stimulated by dithiothreitol. Inhibition by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline or excess zinc ions as well as the requirement for divalent cations suggested that a zinc-containing metalloprotease participated in this process. Furthermore, light-independent degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase was enhanced in chloroplasts isolated from leaves in which senescence was accelerated by nitrogen starvation. Our results indicate that light-independent stromal protein degradation in intact chloroplasts may be analogous to proteolysis that occurs in intact leaves during senescence. Received: 3 July 1997 / Accepted: 15 October 1997  相似文献   

16.
N. W. Kerby  L. V. Evans 《Planta》1981,151(5):469-475
Characterization by peptide mapping and amino acid analysis of the two major pyrenoid polypeptides from the brown alga Pilayella littoralis shows that they are very similar to the subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) from this alga. The observed similarities are discussed in relation to previous pyrenoid protein characterization from members of the Chlorophyceae.Abbreviations DTT dithiothreitol - EDTA Na2 ethylenediamine tetraacetic acid (disodium salt) - PMFS phenylmethylsul-phonylfluoride - PVPP polyvinylpyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TRIS 2-amino-2-(hydroxymethyl) propane-1,3-diol - TPCK L-1-tosylamido-2-phenylethylchoromethyl ketone  相似文献   

17.
Light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and stromal ATP content were measured in intact isolated spinach chloroplasts. Treatments which decreased stromal ATP, such as incubation with the ATP analog β,γ-methylene adenosine triphosphate or with the energy transfer inhibitor phloridzin inhibited the light activation of rubisco. In the absence of added inorganic phosphate (Pi), light activation of rubisco was inhibited, coincident with low stromal ATP. Addition of methyl viologen restored both stromal ATP and rubisco activity to levels observed in the presence of Pi. Activation of rubisco was inhibited in the presence of 2 millimolar dihydroxyacetone phosphate or 3-phosphoglycerate and stromal ATP was also decreased under these conditions. Both were partially restored by increasing the Pi concentration. The strong correlation between activation state of rubisco and stromal ATP concentration in intact chloroplasts under a wide variety of experimental conditions indicates that light activation of rubisco is dependent on ATP and proportional to the ATP concentration. These observations can be explained in terms of the rubisco activase protein, which mediates activation of rubisco at physiological concentrations of CO2 and ribulose-1,5-bisphosphate and is dependent upon ATP.  相似文献   

18.
When spinach leaf tissue was subjected to evaporative dehydration, photosynthetic capacity at very high (5%) CO2 concentration and saturating irradiance (300 W·m-2), decreased in parallel to the relative water content (RWC). A 50% inhibition was observed at 60–40% RWC. In order to examine whether the inhibition was caused by increased solute concentrations in chloroplasts or cytoplasm, an artificial stroma medium (ASM) was set up containing all major osmotically relevant solutes measured in isolated intact spinach chloroplasts. Subsequently, the response of enzyme activities to normal and to increased concentrations of ASM was examined. Inhibition of enzymes by a concerted increase of all solutes was well correlated to the in-vivo response of photosynthesis to dehydration (60% inhibition at double-strength ASM). Inhibitory solutes were mainly divalent inorganic anions, such as sulfate and phosphate. Inhibition of ribulose-1,5-bisphosphate carboxylase by these ions as studied in more detail. Inhibition of the enzyme by sulfate and phosphate was competitive with respect to ribulose-1,5-bisphosphate, but not with respect to CO2. The KI for sulfate was 2.1 mmol·l-1 and for phosphate 0.57 mmol·l-1. Sugars and amino acids at the concentrations found in spinach chloroplasts did not prevent inhibition of enzymes by anions. The results indicate that increased anion concentrations in cells and organelles are responsible for primary, quickly reversible effects of moderate dehydration on plant tissues.Abbreviations ASM artificial stroma medium - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate-carboxylase/oxygenase - RWC relative water content  相似文献   

19.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from Rhodospirillum rubrum has been crystallized in a form that is suitable for structural studies by x-ray diffraction. The asymmetric unit of the crystal contains one dimeric enzyme molecule of molecular mass 101,000 Da. The enzyme was activated prior to crystallization and is presumed to be in the CO2-activated state in the crystal. The method of hydrophobicity correlation has been used to compare the amino acid sequence of this molecule (466 residues) to that of the large subunit of a higher plant ribulose-1,5-bisphosphate carboxylase/oxygenase (477 residues in Nicotiana tabacum). The pattern of residue hydrophobicities is similar along the two polypeptides. This suggests that the three-dimensional folding of the large polypeptide chains may be similar in plant and bacterial enzymes. If this is so, knowing the structure of either the plant or bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase should aid in learning the structure of the other.  相似文献   

20.
Gerhard Link 《Planta》1982,154(1):81-86
The steady-state levels of plastid RNA sequences in dark-grown and light-grown mustard (Sinapis alba L.) seedlings have been compared. Total cellular RNAs were labeled in vitro with 32P and hybridized to separated restriction fragments of plastid DNA. Cloned DNA fragments which encode the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxylase (dimerizing), EC 4.1.1.39] and a 35,000 plastid polypeptide were used as probes to assess the levels of these two plastid mRNAs. The 1.22-kilobase-pair mRNA for the 35,000 polypeptide is almost undetectable in dark-grown seedlings, but is a major plastid mRNA in light-grown seedlings. The hybridization analysis of RNA from seedlings which were irradiated with red and far-red light indicates that the level of this mRNA, but not of LS mRNA, is controlled by phytochrome.Abbreviations LS large subunit - RuBP ribulose-1,5-bisphosphate - ptDNA plastid DNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号