首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
刘畅  徐宁  宋靖达  胡尚春 《生态学报》2017,37(10):3561-3569
选择黑龙江省森林植物园内景观差异性较大的4个样地。实地测量各样地空气温度、相对湿度、风速等小气候要素数据,问卷调查游人热舒适感受,观察记录游人空间选择及行为特征。旨在寻找小气候要素与人体热舒适感受的关系,以及游人空间选择与热舒适感受评价的关联程度。结果表明:各小气候要素均对游人热舒适感受有一定的影响,其中空气温度对游人热舒适感受影响最大,其次是相对湿度和风速;不同样地内游人对热舒适感受变化的敏感程度不同,水体和植物群落除了通过増湿降温作用调节空间热舒适感受外,其观赏作用也可以降低人们对热舒适感受变化的敏感性;遮荫是夏季游人选择休憩空间的主要因素。  相似文献   

2.
A coupled atmosphere-soil model was applied in order to evaluate the impact of soil wetness on human stress in the absence of horizontal gradients in moisture. The results are illustrated and discussed with consideration to various combinations of wind speed and lower level atmospheric moisture during daylight hours with summer weather conditions. A thermal index composed of the air temperature and wet-bulb temperature does not show major changes as a function of variation of soil mosture. When wind speed and solar radiation are also considered, in a more detailed thermal index, relatively wet soil is associated with the optimal thermal comfort.  相似文献   

3.
 Afternoon observations in summer comparing shoreline with inland atmospheric conditions were made during onshore winds at Victoria, British Columbia, Canada. The onshore wind came from a cool water surface. Mean monthly water temperatures near to shore were between 11 and 11.5° C. The onshore wind brought lower air, ground surface radiant and sky radiant temperatures; lower humidity and greater wind speed. All of these combine to produce a cooler human environment at the shoreline than inland. The relative importance of climatic elements in producing the cooler environment was assessed using sensitivity analyses with eight different human thermal exchange models/indices. Air temperature and wind speed had the greatest effect, followed by ground surface radiant temperature, sky radiant temperature and humidity. Wind speed is the most practical element to consider when trying to maximize human comfort along the shoreline. Received: 9 July 1996 / Revised: 31 March 1997 / Accepted: 14 April 1997  相似文献   

4.
People in urban areas frequently use parks for recreation and outdoor activities. Owing to the complexity of the outdoor environment, there have only been a few attempts to understand the effect of the thermal environment on people's use of outdoor spaces. This paper therefore seeks to determine the relationship between the thermal environment, park use and behavioural patterns in an urban area of Sweden. The methods used include structured interviews, unobtrusive observations of the naturally occurring behaviour and simultaneous measurements of thermal comfort variables, i.e., air temperature, air humidity, wind speed and global radiation. The thermal environment is investigated through the mean radiant temperature (Tmrt) and the predicted mean vote (PMV) index. The outcome is compared to the subjective behaviour and thermal sensation of the interviewees. It is found that the thermal environment, access and design are important factors in the use of the park. In order to continue to use the park when the thermal conditions become too cold or too hot for comfort, people improve their comfort conditions by modifying their clothing and by choosing the most supportive thermal opportunities available within the place. The study also shows that psychological aspects such as time of exposure, expectations, experience and perceived control may influence the subjective assessment. Comparison between the thermal sensation of the interviewees and the thermal sensation assessed by the PMV index indicates that steady-state models such as the PMV index may not be appropriate for the assessment of short-term outdoor thermal comfort, mainly because they are unable to analyse transient exposure.  相似文献   

5.
Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.  相似文献   

6.
Occupants’ preferences for air movement in naturally ventilated buildings have been extracted from a database of three thermal comfort surveys conducted in the humid subtropical climate zone in China, during winter, spring, and summer seasons. The distribution of draft sensation shows that only 25.7, 38.5, and 28.7% of the subjects in winter, spring, and summer, respectively, felt that the available air movement was just right, suggesting that indoor air velocity may be a big problem in naturally ventilated buildings in humid subtropical China. Air movement preferences show that 15.8, 61.3, and 80.6% of subjects in winter, spring, and summer, respectively, wanted more air movement. Only a handful of subjects wanted less air movement than they were actually experiencing in any season, suggesting that draft was not much of an issue for thermal comfort. Occupants’ preference for air movement is strongly related to thermal sensation, showing that people want to control air movement as a means of improving their comfort. The demand for less air movement under cool sensation is much smaller than the overwhelming demand for more air movement when the sensation was warm. The above results indicate that air movement might have a significant influence over the respondents’ comfort sensation and that people required a high level of air movement in order to be comfortable during the summer season. Thus, one efficient way to improve the thermal environment in summer in humid subtropical China could be to provide occupants with effective natural ventilation and allow personal control of the air movement. Our findings are also applicable to other buildings, to encourage designers to provide air movement as a low energy cooling strategy and to ensure that sufficient levels of air movement are available.  相似文献   

7.
During two investigation periods in transient seasons (14 weekdays in autumn 2009 and 15 weekdays in spring 2010) 967 visitors in two inner city squares of Szeged (Hungary) were asked about their estimation of their thermal environment. Interrelationships of subjective assessments—thermal sensation, perceptions and preferences for individual climate parameters—were analyzed, as well as their connections with the prevailing thermal conditions [air temperature, relative humidity, wind velocity, mean radiant temperature and physiologically equivalent temperature (PET)]. Thermal sensation showed strong positive relationships with air temperature and solar radiation perception, while wind velocity and air humidity perception had a negative (and weaker) impact. If a parameter was perceived to be low or weak, then it was usually desired to be higher or stronger. This negative correlation was weakest in the case of humidity. Of the basic meteorological parameters, Hungarians are most sensitive to variations in wind. Above PET?=?29°C, people usually prefer lower air temperature and less solar radiation. The temperature values perceived by the interviewees correlated stronger with PET, but their means were more similar to air temperature. It was also found that the mean thermal sensation of Hungarians in transient seasons depends on PET according to a quadratic function (R 2?=?0.912) and, consequently, the thermal comfort ranges of the locals differ from that usually adopted.  相似文献   

8.
李明财  熊明明  黄鹤  任雨  张皞 《生态学杂志》2012,31(6):1541-1547
为了研究城市规划对局地气候的影响,以位于天津市滨海新区南部的南港工业区为例,应用区域边界层模式模拟了城市规划前后该区域气候环境要素的变化,同时分析了对该区域石化工业生产的可能影响。结果表明:城市规划对四季温度均有明显的影响,春季主要以降温为主,降幅在13:00最高,可达到0.6℃;城市规划对冬、夏、秋三季温度的影响主要表现为白天降温,而晚间增温,其中冬季气温的变幅高于夏、秋季;城市规划对冬、春、秋三季的水平风速均有明显的增加作用,其中秋、冬两季的风速增加最为明显,最高增加了0.6m.s-1,春季次之,增幅均在0.4m.s-1以上,夏季仅有微弱增加,为0.2m.s-1;气温变化(夜间升高、白天降低)以及风速的提高,有利于该地区石化工业作业生产,增加了夏季作业工人的舒适度,降低了石化工业的风险,同时风速的增加有利于污染物的扩散。总体上,城市规划使该区域气候环境要素发生了明显的改变,有利于石化工业的作业生产。  相似文献   

9.
Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological–behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.  相似文献   

10.
Urban valleys as a primary element of the urban environment have played an undeniable role in the intensification of urban heat islands as climate change has increased in the past century. However, appropriate solutions can help improve outdoor thermal comfort (OTC) in these areas. In the present study, parameters related to thermal comfort outdoors such as air temperature (Ta), wind speed (Ws), sky view factor (SVF), mean radiant temperature (MRT) and physiological equivalent temperature (PET) in an urban street were analyzed using ENVI-met simulation. Furthermore, the influence of tree species and street orientation in the study area was also examined to improve thermal comfort conditions. Similarly, with field measurements on site, a questionnaire was used to determine the OTC range of visitors to the urban valley. The study also integrates with ENVI-met microclimatic modeling to improve thermal comfort in the urban street canyon, which was used to simulate the current situation and validated with field measurements, showing a good correlation. The results have revealed that, although SVF has been extensively used in previous studies, it is not an exact indicator to determine the amount of radiation and OTC conditions. The simulation study expressed that orientations' effect on thermal comfort is less prominent than tree cover. However, significant changes in orientation have a remarkable effect on improving OTC in the urban valley.  相似文献   

11.
The objective is to evaluate thermal comfort in the rural highlands of Peru and determine if thermal conditions influence the risk of respiratory infections. The probit regression model is used for this, with the unit of analysis being adults over 60 years of age. The information source is the data from the National Household Survey and the National Service of Meteorology and Hydrology of Peru. In addition, it was possible to monitor the temperature and the interior relative humidity of 4 types of bedrooms with a thermo-hygrometer and compared it with the desired thermal comfort index criterion. The results show that if the air temperature drops on average by one degree (1° C) in the area of residence, the probability of risk of respiratory infections in older adults increases by 0.18, although the relative humidity and the wind speed were not statistically significant at 1% significance level. Finally, the 4 types of bedrooms evaluated lacked the desired thermal comfort and increased the risk of acquiring respiratory infections.  相似文献   

12.
The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly people to heat the room somehow in winter. Moreover, it is particularly important for elderly people to avoid a decrease in peripheral skin temperature, and maintain awareness of the warmth of peripheral areas, such as the leg, in order to ensure thermal comfort.  相似文献   

13.
张俪斌  孙萍  金森 《生态学杂志》2016,27(11):3463-3468
研究蒙古栎阔叶床层在近似恒温湿条件下不同风速时的失水过程,分析了风速对床层失水系数的影响.结果表明: 风速对蒙古栎阔叶床层失水过程的影响与可燃物含水率有关.从较高含水率(>75%)到近平衡含水率的多个失水过程可划分为3个阶段:有风失水速率大于无风失水速率的初始阶段、有风失水速率小于无风失水速率的中间阶段、不同风速失水速率相近的结束阶段.风速的影响随床层含水率降低而下降.蒙古栎阔叶床层的失水系数受风速、密实度和两者交互作用的影响,其中,失水系数随风速以三次多项式近似单调增加.  相似文献   

14.
This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments—an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index—physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.  相似文献   

15.
Studies on the thermal comfort of humans in urban areas require meteorological data such as air temperature, air humidity, wind speed, and short- and long-wave fluxes. In such studies radiation fluxes can be expressed by the mean radiant temperature—a parameter with high variability in urban areas due to variability in global radiation. Wind speed in urban areas is influenced by urban obstacles and their orientation. Both mean radiant temperature and wind speed can be modified or changed by different height-to-width ratios or orientation of urban structures. Modifications to these parameters by typical urban structures (represented by the height-to-width ratio) can result in variation of mean radiant temperature over a range of more than 30°C, which can correspond to three levels of thermal stress. The results presented here provide a possible means of comparing different urban configurations in different climate regions.  相似文献   

16.
This paper describes the application of a methodology designed to analyse the relationship between climatic conditions and the perception of bioclimatic comfort. The experiment consisted of conducting simultaneous questionnaire surveys and weather measurements during 2 sunny spring days in an open urban area in Lisbon. The results showed that under outdoor conditions, thermal comfort can be maintained with temperatures well above the standard values defined for indoor conditions. There seems to be a spontaneous adaptation in terms of clothing whenever the physiological equivalent temperature threshold of 31°C is surpassed. The perception of air temperature is difficult to separate from the perception of the thermal environment and is modified by other parameters, particularly wind. The perception of solar radiation is related to the intensity of fluxes from various directions (i.e. falling upon both vertical and horizontal surfaces), weighted by the coefficients of incidence upon the human body. Wind was found to be the most intensely perceived variable, usually negatively. Wind perception depends largely on the extreme values of wind speed and wind variability. Women showed a stronger negative reaction to high wind speed than men. The experiment proved that this methodology is well-suited to achieving the proposed objectives and that it may be applied in other areas and in other seasons.  相似文献   

17.
The outdoor environment is deteriorating in many tropical cities due to rapid urbanization. This leads to a number of problems related to health and well-being of humans and also negatively affects social and commercial outdoor activities. The creation of thermally comfortable microclimates in urban environments is therefore very important. This paper discusses the influence of street-canyon geometry on outdoor thermal comfort in Colombo, Sri Lanka. Five sites with different urban geometry, ground cover, and distance from the sea were studied during the warmest season. The environmental parameters affecting thermal comfort, viz. air temperature, humidity, wind speed, and solar radiation, were measured, and the thermal comfort was estimated by calculating the physiologically equivalent temperature (PET). The thermal comfort is far above the assumed comfort zone due to the combination of intense solar radiation, high temperatures, and low wind speeds, especially on clear days. The worst conditions were found in wide streets with low-rise buildings and no shade trees. The most comfortable conditions were found in narrow streets with tall buildings, especially if shade trees were present, as well as in areas near the coast where the sea breeze had a positive effect. In order to improve the outdoor comfort in Colombo, it is suggested to allow a more compact urban form with deeper street canyons and to provide additional shade through the use of trees, covered walkways, pedestrian arcades, etc. The opening up of the city's coastal strip would allow the sea breeze to penetrate further into the city.  相似文献   

18.
Agroforestry systems can minimize heat stress and improve cattle welfare, but the influence of the forest component in microclimatic changes in the southern Amazon remains unclear. This study aimed to compare the thermal comfort indices in grass monoculture and integrated systems. The three systems were pasture under full sunlight (PFS), integrated (triple-row) livestock-forestry (ILFT), and integrated (single-row) livestock-forestry (ILFs), across four seasons, for two years, from June 2017 to June 2019. We assessed photosynthetically active radiation (PAR), air temperature, relative humidity, black globe temperature, and wind speed. Thermal comfort indices such as temperature-humidity index (THI), black globe temperature-humidity index (BGHI), and radiant thermal load (RTL) were calculated based on microclimate data daily-collected from 8:00 to 16:00. The ILFT mean THI (76.8) was slightly lower than ILFS and PFS. The BGHI and RTL values decreased as shading increased (PFS > ILFs > ILFT). The most challenging heat stress conditions for grazing animals occurred predominately during winter and autumn. In conclusion, the presence of trees in pastures of the southern Amazon improved the microclimate and, consequently, the thermal comfort indices. Agroforestry systems can foster an environment with a more suitable thermal comfort or less restrictive to animal performance, which contribute to mitigating global climate change for forage-livestock systems in Brazilian Amazon.  相似文献   

19.
Standard meteorological measurements of dry bulb temperature, wind speed, sunshine, cloud cover and rainfall are used to calculate the clothing insulation required by man for thermal comfort under given weather conditions. The calculation is based on earlier work on the effect of weather on sensible (non-evaporative) heat loss from sheep, which used the relation between heat flow, thermal insulation and the difference between body and environmental temperatures.Clothing insulation for man is estimated in two ways: as clothing (Ic) that is impervious to the effects of wind and rain; and as the equivalent depth of sheep fleece (fm), which is not impervious. This allows the assessment of wind chill for a range of clothing of varied penetration by wind instead of for only one type of garment.Results are given as daily means calculated from hourly measurements throughout 1973 for Plymouth (on the south coast of Britain) and Aberdeen (on the far northeast coast of Britain). Wind chill is estimated both by its effect on fm requirement and by the fall in air temperature that would be needed to produce under still-air conditions the same demand for fm that occurs in the actual environment. The monthly mean fm requirement is reduced by about 40% when the effect of wind is removed. When wind chill is estimated as an equivalent fall in air temperature it approximates to 1 K per knot wind speed measured at the standard meteorological height of 10 m.  相似文献   

20.

Background

How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people''s ability to estimate extreme wind speeds and perceptions of their associated risks.

Method

We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt.

Results

Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms.

Conclusion

These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号