首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
模拟增温下门源草原毛虫幼虫生长发育特征   总被引:4,自引:2,他引:2  
采用开顶式生长室(OTC)模拟增温的方法研究温度升高对门源草原毛虫幼虫发育历期、生长发育速率、体重及存活等的影响。研究发现:在增温0—1.26℃内,随着增温幅度变大,1龄幼虫越冬后开始活动期和蛹期提前,整个幼虫的发育历期缩短;增温可以提高门源草原毛虫幼虫的相对生长速度,使其发育高峰期提前到5月份;随着增温幅度变大,门源草原毛虫幼虫的体重有减轻的趋势;0—1.26℃的温度升高导致门源草原毛虫幼虫存活率增提高,但是增温过高(1.98℃)也会导致其存活率急剧下降。  相似文献   

2.
【目的】本文旨在明确营养状况不同造成的梨小食心虫Grapholitha molesta(Busck)雌、雄蛹重量差异对其羽化的成虫产卵量、产卵期、寿命及下一代(F1)幼虫发育的影响。【方法】室内条件下,通过不同的饲养方法,获得个体重量不同的梨小食心虫雌、雄蛹,待其羽化交配后,记录其产卵量、产卵时间和成虫寿命;卵孵化前后,分别测量卵和初孵幼虫大小,计算卵孵化率,统计幼虫发育历期。【结果】雌蛹重量对梨小食心虫的成虫产卵量影响显著,其重量与产卵量呈正相关(y=15.505x-59.292);同一条件下,雌蛹与雄蛹重量也呈正相关(y=0.823x-0.538)。同时,雌蛹重量对成虫产卵期影响也较大,蛹重大的个体羽化的雌虫比蛹重小的个体羽化的雌虫产卵高峰期提前1 d;较重、中等和较轻蛹羽化出的雌虫个体每天产卵量高于10粒/雌的时间分别为9~10,7和5~6 d;产卵量高于5粒/雌的时间分别为12~13,9和6~7 d。而雄蛹重量对产卵量、雄成虫寿命影响没有明显影响。较轻的蛹羽化的雌成虫寿命比较重蛹羽化的雌成虫短2~3 d;而雄蛹重量对其羽化的雄成虫寿命影响没有明显规律。雌、雄蛹重量对其羽化成虫的卵孵化率、卵和初孵幼虫的大小影响均不显著,对F_1幼虫发育历期影响也不显著。【结论】梨小食心虫雌蛹重对羽化成虫的产卵量和产卵期等影响显著,田间防治时应注意在不同条件下完成发育的个体,尤其是雌虫,由于营养差异引起的个体大小对随后种群增长的影响。  相似文献   

3.
美洲黑杨(Populus deltoides)是长江中下游及江淮平原重要的造林树种,目前广泛栽培的美洲黑杨既有雄株品系,也有雌株品系。为了解镉(Cd)胁迫条件下美洲黑杨雌、雄株的耐受性差异,采用盆栽实验,研究Cd污染(10 mg·kg–1)条件下美洲黑杨雌、雄株气体交换速率、CO_2响应曲线、叶绿素荧光参数、渗透调节能力、激素含量的响应特征,以及接种丛枝菌根真菌(Rhizophagus intraradices)对受Cd胁迫美洲黑杨雌、雄株的生理效应。结果表明:(1)Cd胁迫下,美洲黑杨雌、雄株净光合速率、气孔导度、胞间CO_2浓度、蒸腾速率、光系统II(PSII)最大光化学量子产量、PSII有效光化学量子产量、光化学淬灭系数、最大羧化速率、最大电子传递速率、磷酸丙糖利用速率均不同程度降低,雌株的下降幅度更大,接种丛枝菌根真菌的雌株的以上参数有了不同程度的恢复,但对雄株没有明显影响;(2)Cd胁迫下,美洲黑杨雌雄株的脯氨酸含量均显著增加,接种丛枝菌根真菌进一步提高了雌株的脯氨酸含量;(3)Cd胁迫下,美洲黑杨雌、雄株叶片生长素含量下降,脱落酸含量增加,雌株的变化幅度更大,接种丛枝菌根真菌有利于恢复雌株激素的平衡。由此可见,与雄株相比,Cd胁迫对美洲黑杨雌株气体交换速率和碳固定能力的负面影响更大,植株光合机构受损更严重,激素平衡更易受到影响,表现出更弱的胁迫耐受性;接种丛枝菌根真菌有利于增强美洲黑杨雌株的渗透调节能力并在一定程度上恢复雌株的固碳能力和激素平衡,但菌根对雄株的效应并不显著。  相似文献   

4.
虫酰肼对甜菜夜蛾汰选种群生长发育及生殖的影响   总被引:1,自引:0,他引:1  
研究虫酰肼对甜菜夜蛾汰选种群生长发育及生殖的影响。结果显示:经虫酰肼处理后,甜菜夜蛾SS种群和RR种群卵的孵化抑制中浓度分别为179.38和160.71mg/kg,孵化幼虫的存活抑制中浓度分别为18.64和30.53mg/kg,虫酰肼对甜菜夜蛾卵的孵化率影响较小,而对孵化后幼虫的存活率影响较大。处理初孵幼虫6d后,2种群幼虫存活率及化蛹率随处理浓度的增加而降低,幼虫历期最高饲毒浓度与最低饲毒浓度相比分别延长了2.71d和6.19d,同一浓度下,RR种群幼虫历期比SS种群缩短了0.94~2.59d。处理甜菜夜蛾3龄幼虫12h后,随虫酰肼浓度的增加,2种群化蛹率逐渐降低,雌雄蛹重均有递减的趋势,雌蛹比例随浓度的增加变化较小,但SS种群雌蛹比例≤50.00%,而RR种群雌蛹比例≥50.00%,雌雄成虫羽化率总体上依次递减,处理浓度大于1.00mg/kg时虫酰肼对甜菜夜蛾成虫羽化的影响较大。  相似文献   

5.
在昆虫中,雄虫先于雌虫羽化,称为雄虫先熟现象,而雌虫先于雄虫羽化,称为雌虫先熟现象。前者最为普遍,后者报道较少。本试验在20、22和25℃下对棉铃虫Helicoverpa armigera(Hilbner)的生长发育进行了详细的研究。结果显示发育历期随温度的升高而缩短,雌雄间发育历期有着显著的差异,各个温度下雌虫均比雄虫先羽化,表明棉铃虫属于雌性先熟种类,而这种差异主要是由于雌虫的蛹期较短所致。幼虫发育历期与蛹重呈显著的正相关性。  相似文献   

6.
【目的】为明确短时高温对绿豆象Callosobruchus chinensis (L.)各虫态及其后虫态生长发育与繁殖能力的影响。【方法】以27℃饲养的绿豆象为对照,在30、33、36、39、42和45℃条件下分别对绿豆象卵、幼虫、蛹和成虫进行3 h的短时高温处理。【结果】短时高温对绿豆象卵的孵化率、幼虫的化蛹率和蛹的羽化率均有显著影响,但对卵和幼虫的后续发育影响不显著;幼虫耐高温的能力最强,经短时高温处理后化蛹率均在90%以上;蛹经45℃短时高温处理后虽表现出较高的羽化率,但羽化后成虫的寿命和产卵量均显著降低。卵期、幼虫期和成虫期绿豆象对短时高温的耐受性均有性别差异,其中,卵期和蛹期雄虫耐热性强于雌虫,成虫期雌虫强于雄虫。短时高温处理对绿豆象成虫的繁殖能力影响显著,经45℃处理后成虫的产卵量为32.30粒/头,显著低于对照。【结论】39℃以上的短时高温对绿豆象处理虫态及雌雄性别比有明显的影响,对其后虫态发育的影响仅见高温处理蛹后导致成虫繁殖能力下降。  相似文献   

7.
在昆虫中,雄虫先于雌虫羽化,称为雄虫先熟现象,而雌虫先于雄虫羽化,称为雌虫先熟现象.前者最为普遍,后者报道较少.本试验在20、22和25℃下对棉铃虫Helicoverpa armigera(Hübner)的生长发育进行了详细的研究.结果显示发育历期随温度的升高而缩短,雌雄间发育历期有着显著的差异,各个温度下雌虫均比雄虫先羽化,表明棉铃虫属于雌性先熟种类,而这种差异主要是由于雌虫的蛹期较短所致.幼虫发育历期与蛹重呈显著的正相关性.  相似文献   

8.
探索利用食用菌菌渣饲养锹甲科环锹属鸡冠细身赤锹形虫Cyclommatus mniszechi幼虫的新技术,以期为食用菌菌渣的二次利用和锹甲科昆虫人工饲养繁殖提供参考。本实验置于25℃±1℃,相对湿度60%±5%的黑暗条件下,通过控制变量法筛选出适合鸡冠细身赤锹形虫幼虫生长发育的食用菌种菌渣。研究发现,白木耳菌渣灭菌组幼虫雌虫化蛹率为75. 00%,羽化率为75. 00%,雄虫化蛹率为100%,羽化率为33. 33%; 3龄幼虫中仍用白木耳非灭菌菌渣单独饲养的幼虫(雌虫和雄虫)(白木耳非灭菌组A)均不能化蛹羽化,后期用白木耳非灭菌菌渣∶发酵木屑=1∶1饲养的幼虫(雌虫和雄虫)(白木耳非灭菌组B)化蛹率和羽化率均为100%;且试验所得的雌虫均可正常繁殖产卵;白木耳非灭菌组B的雄虫的体重和各形态特征(包括体长、上颚长、上颚基宽、鞘翅长、鞘翅宽)与对照组均无显著差异,说明在一定程度上,白木耳菌渣可作为人工饲料饲养鸡冠细身赤锹形虫幼虫。  相似文献   

9.
氯虫苯甲酰胺是我国蜂农防治蜂巢小甲虫Aethina tumida的主要杀虫剂。本研究旨在探讨氯虫苯甲酰胺对蜂巢小甲虫生长发育和繁殖的亚致死效应,为氯虫苯甲酰胺的合理使用提供一定的理论依据。本文采用饲料混毒法测定了氯虫苯甲酰胺对蜂巢小甲虫的毒力以及亚致死剂量LC10和LC25对蜂巢小甲虫生长发育和繁殖的影响。结果表明,氯虫苯甲酰胺对蜂巢小甲虫3龄初幼虫的LC50、LC25、LC10分别为5.193 μg/g、1.678 μg/g和2.865 μg/g。以氯虫苯甲酰胺亚致死剂量处理蜂巢小甲虫3龄初幼虫后,幼虫发育历期、雌预蛹期+蛹期、雄预蛹+蛹期均显著延长,且分别延长了3.38%和4.50%、10.51%和21.92%、5.26%和12.20%。LC10和LC25处理组幼虫的存活率均降低,尤其LC25处理组与对照组存在显著差异。LC10和LC25处理组漫游期幼虫重、初羽化雌虫重和初羽化雄虫重相比于对照均显著降低,且分别减轻了15.45%、21.54%、17.26%和13.47%、16.47%、16.46%。LC10和LC25处理组的产卵前期分别为7.96 d和7.47 d,比对照组显著缩短12.36 d和12.85 d;60 d内单雌产卵总量与对照组间无显著性差异,但在产卵期5~7 d时,LC25处理组的单雌产卵量显著增加。LC10和LC25处理组蜂巢小甲虫种群趋势指数低于对照组,但其种群趋势指数均远大于1,表明蜂巢小甲虫种群仍呈增长趋势,因此应加强蜂巢小甲虫的防控以及对氯虫苯甲酰胺的抗性监测。  相似文献   

10.
[目的]为了研究马铃薯块茎蛾Phthorimaea operculella(Zeller)幼虫的饲养密度对生殖的影响。[方法]本实验研究并比较了两种幼虫密度(15头/130 g块茎、45头/130 g块茎)的马铃薯块茎蛾成虫按照1:5和1:1比例交配后代的产卵量、畸形卵率、孵化率、化蛹率、羽化率、性比等生物学参数。[结果]高幼虫密度饲养的马铃薯块茎蛾化蛹率、羽化率、存活率、性比均显著较低,而幼虫~蛹的历期显著短于正常幼虫密度的。两种密度成虫按1:5头配对产卵,若雄性亲本为高幼虫密度饲养则卵的孵化率显著较低,若雌性亲本为高幼虫密度饲养则产卵量较低,畸形卵率显著较高。两种密度雌雄虫均为5头进行配对时,正常幼虫密度雌虫其所产卵的畸形率显著较低,产卵量、卵孵化率均显著较高,后代幼虫历期、化蛹率显著较高。而高幼虫密度雌虫其所产卵则受雄虫影响,亲代为高密度雄虫则畸形率较低,孵化率较高。[结论]高幼虫密度饲养的雄、雌虫生殖活力均降低。高幼虫密度雌虫可受高幼虫密度雄虫的诱导提高生殖能力,并影响其后代性比从而调节其种群动态。  相似文献   

11.
Jason E. Jannot 《Oecologia》2009,161(2):267-277
The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids.  相似文献   

12.
Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well‐known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life‐history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life‐history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex‐specific effects of artificial light on caterpillar life‐history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life‐histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history.  相似文献   

13.
张珊珊  康洪梅  杨文忠  向振勇 《广西植物》2016,36(10):1265-1274
苯菌灵为杀真菌剂,在土壤含水量为32.32%、29.63%、25.86%、19.39%、12.93%和6.46%的条件下,分别添加苯菌灵和不添加苯菌灵,形成“低AMF”和“高AMF”处理。该研究以云南蓝果树幼苗叶片为材料,利用盆栽试验研究了干旱胁迫下丛枝菌根真菌( AMF)对云南蓝果树幼苗叶片解剖结构及抗旱性的影响。结果表明:添加苯菌灵处理显著降低了不同水分处理条件下AMF侵染率,随着干旱胁迫程度加剧,云南蓝果树幼苗根部的AMF侵染率显著降低。轻度胁迫条件下(土壤含水量为29.63%),叶片解剖结构参数未发生显著变化;土壤含水量低于25.86%,云南蓝果树幼苗表现出较高的抗旱性,苯菌灵处理可以显著影响叶片角质层厚度、栅栏组织厚度和上表皮厚度等7个叶片结构指标,证明了高AMF可以增强代表云南蓝果树幼苗叶片抗旱性的结构性状。土壤含水量为25.86%、19.39%和12.93%时苯菌灵处理的效果较土壤含水量为6.46%时更显著,这是因为6.46%的土壤含水量严重抑制AMF的侵染,说明AMF侵染程度会影响云南蓝果树幼苗的抗旱性。进一步用隶属函数值法对10个叶片性状进行综合评价,发现高AMF处理可增强云南蓝果树幼苗的抗旱性。该研究结果为AMF在濒危物种云南蓝果树保护过程中的合理利用提供了理论依据。  相似文献   

14.
试验研究了几种农用杀菌剂和除草剂对土壤丛枝菌根真菌孢子形成和柑桔根系菌根形成的影响。结果表明:大多数杀菌剂的施用显著地抑制了土壤有益微生物的生长和活动,克菌丹对其它土壤微生物抑制的同时并不影响丛枝菌根真菌的生长,田间应用菌根真菌接种时,结合应用克菌丹处理提高了接种的有效性。  相似文献   

15.
Abstract.  Beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), caterpillars are destructive crop pests responsible for considerable annual economic losses. These generalist herbivores are challenged with a diversity of dietary choices that can impact their survival, development and fecundity. In the present study, dietary choices of S. exigua caterpillars, based on the protein to digestible carbohydrate (P : C) ratio of the food, and the impact of nutritionally unbalanced foods on caterpillar performance are assessed. In choice experiments, individual third-instar caterpillars are offered simultaneously a P-biased and a C-biased food until pupation. Caterpillars feed nonrandomly and select a slightly P-biased diet (22P : 20C). In no-choice experiments, second instar caterpillars are reared until pupation on diets ranging in P : C ratio from extremely P- to extremely C-biased. High mortality and delayed development are observed on the C-rich, P-poor diets, highlighting the potential deleterious effects of excess carbohydrates and the importance of protein for growth and development. Diet-dependent differences in pupal weight or pupal lipid reserves are not observed. This contrasts with closely-related Spodoptera species where pupal mass and lipid stores increase on C-rich, P-poor diets. On the extremely P-biased diet, performance is similar to that of individuals reared on the self-selected diet, suggesting that these caterpillars may efficiently be deaminating excess amino acids to generate carbon skeletons, which are shunted into lipid biosynthesis. Spodoptera exigua caterpillars exhibit flexible and efficient pre-ingestive nutrient intake regulation and post-ingestive utilization, allowing these generalist feeders to cope with the heterogeneous diets they may encounter.  相似文献   

16.
Aims Although ecological interactions are often conceptualized and studied in a pairwise framework, ecologists recognize that the outcomes of these interactions are influenced by other members of the community. Interactions (i) between plants and insect herbivores and (ii) between plants and mycorrhizal fungi are ubiquitous in terrestrial ecosystems and may be linked via common host plants. Previous studies suggest that colonization by arbuscular mycorrhizal fungi (AMF) can modify plants' induced responses to herbivore attack, but these indirect effects of fungal symbionts are poorly understood. I investigated the role of AMF in induced plant response to a generalist herbivore.Methods I manipulated AMF status and herbivory in Cucumis sativus L. (cucumber, Cucurbitaceae) in a greenhouse to investigate induced responses in the presence and absence of the mycorrhizal fungus Glomus intraradices (Glomeraceae). Spodoptera exigua Hübner (Noctuidae) were used to manipulate prior damage and later as assay caterpillars. I also measured G. intraradices and herbivory effects on plant N and effects on plant growth.Important findings AMF status affected the induced response of C. sativus, underscoring the importance of incorporating the roles of plant symbionts into plant defense theory. Assay caterpillars ate significantly more leaf tissue only on mycorrhizal plants that had experienced prior damage. Despite more consumption, biomass change in these caterpillars did not differ from those feeding on plants with other treatment combinations. Leaf N content was reduced by G. intraradices but unaffected by herbivory treatments, suggesting that the observed differences in assay caterpillar feeding were due to changes in defensive chemistry that depended on AMF.  相似文献   

17.
Rapid warming in northern ecosystems is simultaneously influencing plants, herbivores and the interactions among them. Recent studies suggest that herbivory could buffer plant responses to environmental change, but this has only been shown for vertebrate herbivores so far. The role of invertebrate herbivory in tundra ecosystems is often overlooked, but can be relevant in determining the structure and dynamics of tundra plant communities and may also affect how plants respond to warming. Invertebrate herbivores are also likely to respond more rapidly to warming than vertebrates because their behaviour and life cycles strongly depend on temperature. We investigated the effects of current season warming on Arctic moth caterpillars, their herbivory rates, and the subsequent responses of two common tundra plants, Salix arctica and Dryas octopetala. We manipulated both herbivore presence and temperature in a full‐factorial field experiment at two elevations, using enclosures and passive warming chambers. Changes in temperature achieved through elevation and/or experimental warming directly affected caterpillars, herbivory and the responses of plants. Caterpillars performed worse (higher respiration rates and lower growth rates) in warmer, lower elevation plots and shifted their diets towards more nutritious foods, such that the relative intensity of herbivory changed for the two studied plants. Within‐season responses of both forage plant species were weak, but invertebrate herbivores affected the responses of plants to elevation or experimental warming. Our results suggest that increased temperatures can reduce the performance of cold‐adapted invertebrate herbivores, with potential consequences to the longer term responses of tundra plants to warming due to changes in herbivory rates and selective foraging.  相似文献   

18.
Toxic plants with sequestering specialists are presented with a problem because plant derived toxins protect herbivores against natural enemies. It has been suggested that early induction of toxins and later relaxation of these defenses may help the plant resolve this problem because neonate caterpillars incur the physiological cost of dealing with toxins in early life, but are denied toxins when they are able to sequester them efficiently. In California, the pipevine swallowtail, Battus philenor L. (Lepidoptera: Papilionidae), feed exclusively on Aristolochia californica Torrey (Aristolochiaceae), an endemic vine that contains toxic alkaloids called aristolochic acids that caterpillars sequester to provide chemical defense in immature and adult stages. In a field experiment, the concentration of aristolochic acids doubled in the plant following leaf damage and returned to constitutive levels after six days. Neonate pipevine swallowtail caterpillars showed no aversion to high levels of aristolochic acid in a preference test. Caterpillars reared on leaves with supplemented aristolochic acid showed no physiological cost or increased mortality compared to caterpillars reared on un-supplemented leaves. Searching efficiency and capture rate of lacewing larvae (Chrysoperla), a common predator of first instar caterpillars, was compromised significantly after feeding on caterpillars reared on leaves with supplemented concentrations of aristolochic acid compared to caterpillars feeding on control plants. Additionally, mortality of lacewings increased when they were provided with a diet of B. philenor caterpillars reared on supplemented leaves compared to caterpillars reared on control leaves. Thus, the induction of aristolochic acids in the plant following leaf damage does not resolve the problem confronted by the plant and may confer benefits to this sequestering specialist.  相似文献   

19.
Abiotic and biotic factors can alter the nature and strength of plant–plant interactions and therefore self-thinning (density-dependent mortality), but few studies have looked at how such factors interact. We investigated how salt stress and arbuscular mycorrhizal fungi (AMF) influence plant neighbour effects and self-thinning in experimental populations of Medicago sativa. We obtained two mycorrhizal levels by applying the fungicide benomyl (low AMF) or not (high AMF) at three salinity levels (0.05%, 0.2% and 0.5%). In experiment 1, we investigated how salinity and AMF interact to influence plant interaction intensity using a neighbour removal treatment. In experiment 2, we investigated how self-thinning dynamics vary under salinity conditions and different AMF levels at two initial plant densities (6000 and 17,500 seeds m?2). Shoot biomass and plant density were measured 30, 60 and 90 days after sowing. Standardized major axis regression was used to estimate self-thinning parameters. In experiment 1, AMF increased competitive plant neighbour effects when there was no salinity stress, but this enhancement was not significant with increasing salinity. In experiment 2, there were effects of salinity and AMF on the self-thinning trajectory. The slope of the log (mean shoot biomass per unit area) vs. log density relationship was significantly steeper for the high AMF treatment than for the low AMF treatment without salinity, but the effect of AMF level on the self-thinning exponent was not significant under the two higher salinity levels. The effect of AMF treatments on the intercept of the self-thinning line was not significant at 0.2% salinity but was significant at 0.5% salinity, higher elevation for high AMF treatment. In self-thinning populations, AMF decreased the survival rate without salinity, but increased the survival rate at the highest salinity level. Our results support the hypothesis that salinity and AMF interact to influence plant neighbour effects and self-thinning. Under no-salinity conditions, AMF increased competition, steepened the self-thinning line and decreased survival rate, but these effects of AMF were not significant in the presence of salinity.  相似文献   

20.
In maize-soybean intercropping systems, the transfer of N from soybean to maize gives the intercropping system the advantage of improved N utilization and higher yields. Mycorrhiza acts as an important pathway for N transfer, providing a constant supply of N to sustain the growth and development of maize in its early stages. However, it is not clear how arbuscular mycorrhizal fungi (AMF) drive the transfer of N from soybean to maize in the intercropping system. Therefore, we quantified the amount of N transferred from soybean to maize under low and high N levels in the intercropping system, and the abundance and diversity of AMF involved in N transfer (15N-AMF) under different conditions by 15N leaf marker and DNA-SIP technology. We found that the interaction between roots and reducing the application of N fertilizer increased the amount of N transfer from soybean to maize. Compared with plastic plate separation (PS), no separation (NS) and mesh separation (MS) significantly increased the N fixation rate (from 14.33% to 39.09%), and the amount of N transfer under NS was 1.95–3.48 times that under MS. N transfer from soybean to maize ranged from 9.7 to 43.42 mg per pot in the no N treatment, while the addition of N fertilizer reduced N transfer by 14.12–66.28%. This is due to root interaction and reduced N fertilization increased the abundance and diversity of the 15N-AMF community, thereby promoting AMF colonization of maize and soybean roots. AMF colonization in soybean and maize roots under NS treatment was 6.47–17.24% higher than under MS treatment in all three levels of N addition. The increase of mycorrhiza in root system increased the N transfer from soybean to maize significantly. These results suggest that reduced N fertilizer in maize-soybean intercropping systems can increase N transfer by the mycorrhizal pathway, meeting maize N requirements and reducing chemical N fertilizer, which is important for sustainable agricultural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号