首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
水坝拆除引起河流连通性、水动力、河流地貌等一系列变化,直接影响了鱼类群落结构和空间分布。黑水河为金沙江左岸一级支流,其上共建四级电站,出于支流生境恢复需求,第四级水坝老木河水坝于2018年12月实行拆除。为探明低水头坝拆除对鱼类群落的影响,结合2018年6月和2019年6月黑水河下游60.4km河段10个点位的渔获物调查,对拆坝前后鱼类群落结构和生态类型变化、优势物种与单位捕捞努力量以及不同河段间的群落相似性进行了分析。结果表明,水坝拆除半年后优势物种仍以鲤科和鳅科为主,但物种数和丰度整体上增加;生态类型上以杂食、喜急流和产微粘性卵鱼为主;拆坝后鱼类群落空间分布变化明显,靠近河口的自然河段鱼类上溯洄游到原坝址的上下游,部分长江上游特有鱼类在原坝址附近发生定殖行为,且拆坝后各河段的鱼类组成结构有同质化趋势。总体上,老木河水坝的拆除对黑水河下游的鱼类群落结构和空间分布产生了积极的影响。  相似文献   

2.
李晋鹏  董世魁  彭明春  吴宣  周芳  于音 《生态学杂志》2017,28(12):4101-4108
底栖动物是对水生态系统退化和生境条件改变最为敏感的生物类群之一,同时也是开展梯级水坝水生态系统变化和演替研究的指示生物.本研究以国际生物多样性保护及水电梯级开发生态影响研究的热点地区澜沧江中下游为例,以澜沧江干流兴建的第一座水坝漫湾库区为研究区域,分别于2011和2016年开展底栖动物定点采样,并结合其蓄水前(自然河段,1996年)和单级水坝蓄水初期(1997年)的历史调研数据,全面分析了梯级水坝运行前后漫湾库区底栖动物群落的结构、分布格局及演变趋势.结果表明: 漫湾库区底栖动物群落的优势种组成逐渐由寡毛纲和昆虫纲种类演变为软体动物门类占绝对优势;沿库区生境的纵向梯度变化,底栖动物密度和生物量均表现为升高的趋势,而静水区增加更为显著;对底栖动物功能摄食群的分析表明,静水区由掠食者和收集者占优势演变为滤食者类占绝对优势;梯级水坝运行后,采用生物指数评价结果表明,2016年库区综合水质指标明显优于2011年.漫湾库区底栖动物群落的演变与上游梯级小湾水坝的调度运行及库区的水文状况和泥沙淤积情况密切相关,并随着梯级水坝的运行处于动态变化之中.  相似文献   

3.
三峡库区河流生境质量评价   总被引:11,自引:5,他引:6  
三峡水库建成蓄水后,库区流水生境的大幅度减少及垂直落差最高可达30 m的消落带的形成,使库区支流生境发生了剧烈变化,因此对库区河流生境质量评价十分必要。基于水文情势、河流形态和河岸带生境3个方面18个指标的河流生境评价指标体系,对三峡库区36条重要支流254个样点河段进行河流生境质量评价。结果表明,4.72%的样点河流生境质量处于优等,30.31%为良好等级,49.61%为一般等级,15.35%为较差等级,没有最差等级的样点。对于表征河流生境状况的水文情势、河流形态和河岸带生境3个类别,254个河段总体上河岸带生境状况最好,其次为水文情势,河流形态最差。从总体上来看,三峡库区支流生境质量是自然环境和人类活动相互作用的结果,其中河岸带植被状况、消落带宽度、人为干扰、河床底质状况、水文情势自然性等为主要的驱动因子。  相似文献   

4.
作为干流高坝水电开发导致鱼类生境丧失的一种补偿措施,支流替代生境近年来被广泛应用于受工程影响河段的土著鱼类保护,但替代支流发挥怎样的保护效果及干流对其的影响仍不清楚。以实施了澜沧江梯级生境替代的支流基独河与罗梭江为研究对象,并选择了邻近的对照支流,通过对鱼类调查数据的分析对比,揭示了各支流鱼类种类组成与群落结构的差异特征,初步阐明了梯级开发下鱼类支流生境替代效果以及干流工程建设对其的影响。结果表明:澜沧江支流替代生境对干流鱼类具有明显的保护作用,支流生境修复后鱼类物种丰富度明显提高,罗梭江土著鱼类、特有鱼类物种数分别增加了12种、7种,基独河则是7种、2种,替代生境能为澜沧江土著鱼类、部分濒危特有鱼类和洄游鱼类提供完成生活史的关键栖息地。干流对支流生境替代保护有着重要影响,罗梭江、基独河与邻近干流鱼类群落的Bray-Curtis相似性分别为21.76%、10.73%,支流河口段保持“河相”是支流生境替代保护效果可持续的关键。综合考虑生境替代保护的效益与投入,建议今后开展此类保护措施时优先选择库尾河相区的支流。  相似文献   

5.
三峡水库建成蓄水后,库区流水生境的大幅度减少及垂直落差最高可达30 m的消落带的形成,使库区支流生境发生了剧烈变化,因此对库区河流生境质量评价十分必要。基于水文情势、河流形态和河岸带生境3个方面18个指标的河流生境评价指标体系,对三峡库区36条重要支流254个样点河段进行河流生境质量评价。结果表明,4.72%的样点河流生境质量处于优等,30.31%为良好等级,49.61%为一般等级,15.35%为较差等级,没有最差等级的样点。对于表征河流生境状况的水文情势、河流形态和河岸带生境3个类别,254个河段总体上河岸带生境状况最好,其次为水文情势,河流形态最差。从总体上来看,三峡库区支流生境质量是自然环境和人类活动相互作用的结果,其中河岸带植被状况、消落带宽度、人为干扰、河床底质状况、水文情势自然性等为主要的驱动因子。  相似文献   

6.
三峡库区支流生境因子对库区蓄水的响应   总被引:2,自引:0,他引:2  
三峡水库的运行调度,使库区支流形成了截然不同的3种河段类型:完全受水库蓄水影响的145m回水段(完全河段),既受蓄水影响又受自然洪汛影响的145—175m回水段(双重河段)以及不受蓄水影响的大于175m的自然河流段(自然河段)。为明确库区蓄水对河流不同河段生境因子的影响程度及差异,对三峡库区36条重要支流的254个河段进行河流生境调查,进行不同河段下生境指标的因子分析,并进一步分析水文情势自然性与不同河段各生境因子的相关关系。结果表明,植被状况对3种不同河段来说均为重要生境因子,但受三峡水库蓄水影响,完全河段植被结构不完整;受库区蓄水影响,完全河段与双重河段及自然河段相比,流速流态状况、表层覆盖物状况、河岸带宽度、湿润率等生境因子有明显改变;水文情势自然性对不同河段生境因子的影响不同。  相似文献   

7.
快速城市化背景下,太湖流域城市河流水环境与生态功能退化问题日益突出,系统开展城市河流生境评价尤为重要。本研究参考和修正了英国城市河流调查评价体系,基于太湖流域城市河流特点,构建了太湖流域城市河段生境质量指数(SHQI)评价体系,分析太湖流域城市河流生境现状及空间差异。结果表明: 50 个河段的SHQI值介于8~21,3个河段的SHQI值为好,6个为较好,27个为一般,9个为较差,5个为差。太湖流域城市河流生境中植被指数情况较好,物理生境、材质指数情况较差。生境总体状况在空间上表现为镇江>湖州>杭州>嘉兴>苏州>无锡>常州,各城市的物理生境、材质指数与污染指数存在显著差异。干流河段与支流河段的SHQI值无显著差异,但干流河段与支流河段的材质指数和污染指数差异显著。本研究构建的评价体系较好地反映了太湖流域城市河流生境现状,可为城市河流生态修复工作提供参考。  相似文献   

8.
王强  袁兴中  刘红  庞旭  王志坚  张耀光 《生态学报》2014,34(6):1548-1558
河流生境是河流生态系统的重要组成部分,是河流生物赖以生存的基础。以位于三峡库区腹心区域的典型山区河流东河为研究对象,采用河流生境调查(RHS)方法调查河流生境,选择河流生境质量评价指数(HQA)、河流生境退化指数(HMS)评估河流生境现状,分析生境质量和人为干扰的空间分布规律。结果表明,51个河段的HQA值介于24—66之间。29.4%河段的HQA为优,29.4%为良,23.5%为中,9.8%为较差,7.8%为差。从HMS看,7.8%的河段保持较自然状态,19.6%受到轻微的破坏,41.2%退化明显,27.5%退化严重,3.9%受到剧烈破坏。HQA与HMS存在显著的负相关关系。东河上、中、下游河段的HQA无明显差异,但HMS差异显著。从干扰来源看,东河上游和中游河流生境主要受引水式小水电、沿河公路、河道采砂影响。东河下游河流生境受高强度的土地开发(农业用地、建设用地),河道采砂,河堤、排污管、桥梁等水工构筑物的修建和三峡水库水位的波动影响。RHS评价结果能较直观地反映河流生境状况,以及导致河流生境质量衰退的原因。  相似文献   

9.
三峡水库河流生境评价指标体系构建及应用   总被引:3,自引:0,他引:3  
陈淼  苏晓磊  党成强  高婷  黄慧敏  董蓉  陶建平 《生态学报》2017,37(24):8433-8444
三峡水库建成蓄水后,库区支流因水位调度导致河流生境发生了剧烈的变化,消落带的形成使库区河流具有同自然河流截然不同的河流生境,新形势下库区河流生境评价十分必要。国内外现有的评价指标体系及评价方法不能够很好地适应这种特殊生境状况,急需建立或改进并形成新的评价指标体系和评价方法。基于此,分析了大量国内外河流生境评价方法,根据大型水库影响下的库区河流的生态环境特点,构建了包括水文情势、河流形态和河岸带生境3个方面18个指标的库区河流生境评价指标体系,并利用层次分析法(主观赋权法)和熵值法(客观赋权法)结合组合赋权法计算得到了各指标权重。使用新建立的指标体系和方法,以三峡库区支流东溪河、黄金河、汝溪河为例,进行河流生境质量评价发现,52.6%的样点河流生境质量处于优等或良好等级;42.1%为一般等级;5.3%为较差等级;没有最差等级的样点。结果表明,该评价指标体系适合库区支流河流生境状况的特殊性,得到的评价结果能较直观的反应河流生境状况,且操作便捷,数据易获得,具有较强的科学性和可操作性。  相似文献   

10.
城镇化背景下,河流生态系统退化趋势明显,有效评价河流生境状况是修复和保护河流生态系统健康的重要基础。深圳市作为全国经济发展的窗口城市,河流生境的调查研究十分匮乏。因此,为阐明深圳市不同城镇化程度的流域河流生境的差异与主要影响因素,对深圳市两个代表性流域的河流生境展开了研究。针对深圳市河流的生境特点,于2019年丰水期(8月)和枯水期(11月)对城镇化程度较高的深圳河流域的13个样点和城镇化程度较低的坪山河流域12个样点河段的生境状况进行定量调查与评价。采用综合评价法,从河床、河道和河岸带3个方面选取10个生境指标,构建深圳市河流生境评价指标体系和评价方法。结果表明:深圳河流域河流生境质量总体较差,生境评价等级为"良"、"中"、"差"的样点河段分别占7.7%、38.5%、53.8%;坪山河流域河流生境质量总体较好,生境评价等级为"优"、"良"、"中"、"差"的样点河段分别占8.3%、41.7%、41.7%、8.3%。方差分析结果表明两次调查河流生境状况无显著性差异,短时间跨度内河流生境状况变化较小;两个流域河流生境状况差异显著,城镇化程度较低的坪山河流域河流生境质量显著好于城镇化程度较高的深圳河流域。河流生境评估指标主成分分析结果表明人类活动强度、河岸稳定性、河道变化、底质、河岸土地利用及植被多样性是影响深圳市河流生境变化的主要因子。本文对河床、河道、河岸带3个方面分别提出针对性的修复建议,对深圳市河流的生境修复和保护具有重要的指导作用。  相似文献   

11.
Habitat and hydrology indices were developed to assess the conditions in reaches of the impounded Mississippi river, the Fort Peck and Garrison reaches of the upper Missouri river, the Missouri National Recreational river (MNRR), the channelized lower Missouri river, and the Ohio river. Data were obtained from field sampling, air photo interpretation, and U.S. Geological Survey (USGS) hydrologic records. Habitat and hydrology attributes were incorporated into four habitat indices (channel complexity, substrate quality, littoral cover, and riparian condition) and one hydrology index. Construction of habitat indices for these very large rivers was complicated by a lack of previous research demonstrating methods for choosing and weighting the metrics used to compose these indices. Many habitat metrics used to assess habitat quality in small rivers proved irrelevant or impractical for assessing habitat quality in the upper Mississippi, Missouri, and Ohio rivers. In addition, these very large rivers, unlike smaller streams, were subject to physical and hydrological alterations due to channelization, revetment, levees, and dams. Because of the lack of proven indicators of habitat condition in very large rivers, we began with a large number of measures of natural and anthropogenic stress, eliminating only those metrics that failed tests of range, redundancy, and correlation with longitudinal position along the river. The lock and low-head dam sequences on the impounded Mississippi and Ohio influenced both hydrological patterns and the resident fish community, with conditions recovering with increased distance below dams, until hydrology was once again altered by impoundment from a downriver dam. Channel complexity and hydrology indices displayed the highest correlations with a multimetric fish index, possibly because these indices integrated habitat condition over a larger scale than the transect- and site-scaled littoral cover and riparian indices. Data limitations prevented the calculation of a littoral cover and a channel complexity index for the upper Missouri and Ohio rivers, respectively.  相似文献   

12.
The Lancang-Mekong River basin contains a diverse assemblage of freshwater fish species; however, their populations are threatened by current and planned dam construction along the river. Fish assemblages are sensitive indicators of environmental degradation and can be used to assess aquatic ecosystem health. This research compared the fish fauna at the Xiaowan hydropower dam located on the middle reaches of the Lancang-Mekong River at three time periods: in 2008 (before impoundment), 2010 (water storage) and 2011 (full operation). A modified fish index of biological integrity (modified F-IBI) was developed and it synthesized information on the taxonomic composition, trophic guilds, and tolerance levels of the fish and habitat diversity to quantitatively assess the condition of fish populations before and after damming. This index also was used to assess the longitudinal diversity of the fish fauna along the river channel and could assess the barrier effect associated with the dam. Jaccard's index of similarity was used as a feasible tool to assess fish diversity loss and biotic homogenization. The analysis clearly showed a homogenization of the fish communities after damming, and the reservoir impoundment region showed much more serious homogenization than the downstream region. The Xiaowan dam had an immediate and profound effect on the fish fauna in this region of the Lancang-Mekong River. A total of eight cascading dams are planned for development in this region, and, unless conservation mitigation efforts are considered, the results could be devastating on the native fish populations of middle reaches of the Lancang-Mekong River basin.  相似文献   

13.
We studied the transport of particulate organic carbon (POC) and dissolved organic carbon (DOC) in two regulated rivers during minimum and increasing discharges. Mean annual concentrations of total POC, measured monthly during conditions of minimum discharge from the dams, were twice as high at a station below a dam with a selective withdrawal system on the Kootenai River (KR, 0.15 mg 1–1), as at station below a dam with hypolimnetic water releases on the Flathead River (FR, 0.07 mg 1–1). Annual mean concentrations of DOC were similar below both dams (1.62 mg 1–1 FR; 1.71 KR). The percentage of POC in four size fractions differed in regulated and unregulated reaches of each river system; the smallest size fraction (0.45–10 smm) constituted a larger percentage of the total POC at the stations below the dams (50–93%), because POC in large size classes had settled out in the reservoir. The three largest size fractions (10–1000 µm) comprised a larger percentage of the total POC when samples were taken during conditions of full discharge from the dam. We measured large increases in all size classes of POC in samples collected during increasing discharges in a regulated reach, reflecting the component of sloughed periphyton and resuspended organic matter that were added during periods of hydropower generation at the dam. Seston (355 µm to 1 cm) collected in nets increased dramatically during increasing flows; concentrations of particulate organic matter (POM) in samples collected two and three hours after water levels began to rise were 572 and 1440 times higher than those collected during minimum discharge at the dam.  相似文献   

14.
In Japan the River Law was amended in 1997 to expand the traditional roles of flood control and water supply in river management to include environmental conservation. Two major multidisciplinary research groups were also founded to address the environmental issues arising from the management of rivers and watershed areas in Japan. One called the River Ecology Research Group was formed in 1995 to search for an ideal dynamic state of rivers to be managed. Six case studies commenced involving measurements of natural and human impacts on representative rivers and their biota selected from different regions of the country. Restoration of natural rivers has also been attempted. The other, called the Watershed Ecology Research Group, was formed in 1998 to study the natural environment surrounding dams. It consists of four groups concerned with forest ecology in the headwaters, raptor management research, reservoir ecology, and flow regime research. The topics include modeling of regeneration dynamics of riparian forests, GIS mapping of endangered raptor habitats, developing measures to reduce eutrophication of reservoir water, and the use of biodiversity of benthic faunas as an indicator of environmental change in the downstream. In both groups, ecologists collaborate with engineers who are responsible for the river infrastructure, to predict future impacts and keep ecological perspectives for the maintenance of the healthy environment of rivers and reservoirs.  相似文献   

15.
1. Coastal rivers can have long tidally influenced reaches that are affected by tides but do not contain saline water. These tidal freshwater reaches have steep geomorphic gradients where the river transitions from narrow, heavily shaded streams to wide, unshaded channels. The influence of these gradients on river ecosystem production is poorly understood. 2. We characterised gradients in irradiance, geomorphology, water clarity and chlorophyll a along 9‐ to 16‐km tidal freshwater reaches of the Newport and White Oak Rivers in North Carolina, USA, and examined the effect of nutrient enrichment on phytoplankton growth in the Newport River. Underwater irradiance was modelled at 2–4 week intervals along both rivers using measurements of the above‐canopy irradiance, canopy cover, water column light attenuation (Kd) and water depth. Suspended material (TSS), dissolved organic carbon (DOC) and chlorophyll a were sampled at 2‐week interval at five sites on the Newport River and on four dates at four sites on the White Oak River over the course of one year. 3. Phytoplankton nutrient limitation was assessed at three locations along the tidal gradient. River water was collected during March, April, June and October, and incubated in 10‐L plastic outdoor containers under ambient water temperature and sunlight. Additions of inorganic nitrogen and phosphorus served as treatments; growth rate during the 4 days of incubation was calculated from the change in chlorophyll a concentration over time. 4. Canopy cover decreased from more than 90% to <10% over the length of both tidal freshwater rivers. Water column irradiance and phytoplankton biomass increased as tree canopy cover decreased and channel width increased. Channel width exceeded predictions for non‐tidal rivers by threefold because of tidal influence. TSS and DOC decreased significantly along the length of the Newport River, but no significant gradients were observed in the White Oak River. Kd did not vary along the tidal gradient of either river. 5. Mesocosm experiments indicated that inorganic nitrogen and phosphorus enhanced the growth of phytoplankton advected from the non‐tidal river into the tidal freshwater river during spring and summer. Phytoplankton in the tidal freshwater reach were generally not nutrient limited. 6. Tidal hydrology (in the absence of saltwater) directly affected the morphology of the channel and indirectly affected biological growth and production. The significant increase in river width, irradiance and phytoplankton biomass distinguished these tidal freshwater ecosystems from their upstream (non‐tidal fluvial) counterparts, while the strong influence of riparian shading distinguished them from the saline estuaries downstream. Future development of ecosystem and biogeochemical models for tidal freshwater rivers will benefit from the linkages between geomorphology and biological processes identified here.  相似文献   

16.
River Habitat Survey (RHS) data collected for the EU-funded STAR project was used to identify hydromorphological characteristic features of rivers in four European regions namely: lowlands; mountain; the Alps; and the Mediterranean. Using RHS attributes, Habitat Quality Assessment (HQA) – a measure of natural habitat diversity, and Habitat Modification Score (HMS) – a measure of anthropogenic modification, we identified considerable differences in frequency, diversity and evenness of features between the regions. A relatively small subset of features clearly distinguish the hydromorphological characters of lowland, Alpine and southern European rivers. It was more difficult to distinguish mountain rivers from Alpine rivers. The highest statistical differences are observed between Lowland and Mountain region. Within the four regions studied the RHS attributes that most strongly influence the HQA and HMS indices were identified. We conclude that specific effort should be made to ensure these are recorded properly as part of the quality control of RHS data. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

17.
流域库坝工程开发的生物多样性敏感度分区   总被引:3,自引:0,他引:3  
李亦秋  鲁春霞  邓欧  刘艺 《生态学报》2014,34(11):3081-3089
流域生态敏感性是流域生态系统遇到干扰时产生生态失衡与生态环境问题的难易程度和可能性大小,生物多样性是其影响最为重要的生态因子。主要考虑物种丰富度、珍稀程度、濒危程度、保护等级和生态系统类型等生物多样性敏感因子,借助GIS强大的空间数据采集和建模分析能力,在专家打分求取敏感因子权重基础上,通过空间模型计算生物多样性敏感度综合得分。基于二级流域综合得分最大值,采用ARCGIS自然间断点法实现敏感度分区,结果表明:极敏感区域主要分布在长江区的岷沱江、金沙江石鼓以下、金沙江石鼓以上、宜宾至宜昌、嘉陵江流域,珠江区的郁江、红柳河和西江流域,西南诸河区的澜沧江、红河和怒江及伊洛瓦底江流域,黄河区的龙羊峡以上流域等,这些区域水生生物特有种和受威胁物种丰度大,国家级自然保护区密集,是陆地生物多样性最丰富的地区。不敏感区域主要分布在松花江区除第二松花江以外流域,西北诸河区的塔里木盆地荒漠、古尔班通古特荒漠、中亚西亚内陆河、塔里木河干流等荒漠区,松花江区低温高寒,具有大森林、大草原、大湿地、大农田和大水域的特点,库坝工程对其生物多样性产生影响的可能性较小,西北诸河的荒漠区生境严酷,生物多样性贫乏,也不具备修建大型水库的条件,生物多样性敏感度也较低。其它区域介于二者之间,因其所处的生态系统类型、物种丰富度、珍稀程度、濒危程度和保护等级不一样,生物多样性敏感度各异。对流域库坝工程产生的生物多样性敏感度进行辨识,可为未来流域水资源合理和适度开发提供科学依据。  相似文献   

18.
Dam construction is considered the major factor contributing to significant modification of river ecosystems. The related ecological effects of these constructions on flow patterns, water quality, sediment etc. have led to increased concerns in recent years. Most of the works so far focus on the assessment of vulnerability, risk, and damages to single factors, such as soil conservation, fish reproduction or vegetation. Few works have been done on to analyzing and predicting the changes of the river ecosystem integrity (REI). Taking three important international rivers, Lancang River, Nu River and Yuan River in LRGR as a case study, the relationship between cascade dam construction and REI is analyzed. A model of the cascade dam construction and the REI is developed on Lancang River after cascade construction, and then it is applied on the Nu River and Yuan River to predict the changes of REI after the planned cascade construction. The results show that there are significant relationships between the cascade construction and the change of the REI. Before the cascade development, REI index of Nu River is the highest with a value of 0.844. Yuan River, the worst of the three before the cascade construction (0.719), is found to be the best one after the cascade construction (0.389). After the cascade construction, the REI index value of the Lancang River is likely to dramatically decrease from 0.825 to 0.274.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号