首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
由于肥胖及肥胖相关疾病在全球范围内的日益流行,对于人们来说,清楚地认识脂肪组织如何生长变得非常重要。多项研究结果表明,氧化还原敏感转录因子在脂肪细胞分化的过程中起到了关键的作用。通过明确氧化还原敏感转录因子调节脂肪分化的作用机制,可以为干预脂肪分化和肥胖的形成提供理论和实验依据。本文回顾了最近的一些数据来列举包括核因子E2相关因子2(Nrf2),过氧化物酶体增殖物激活受体γ共激活因子-1α(PGC-1α),p53,核因子κB(NF-κB)和叉头转录因子(Fox O)等氧化还原敏感转录因子在脂肪细胞分化中起到的作用,为研究脂肪分化的分子机制和干预肥胖及其相关疾病提供新思路。  相似文献   

2.
抗氧化系统对于维持体内的氧化还原平衡具有至关重要的作用。抗氧化系统主要包括抗氧化酶和非酶类抗氧化剂。抗氧化系统一方面可以通过调节活性氧的水平影响各种生物学功能,另一方面各种酶类抗氧化剂和非酶类抗氧化剂本身也可以参与多种生化反应,调节机体功能。脂肪分化是指由多能干细胞或前脂肪细胞分化为成熟脂肪细胞的过程,脂肪分化在很大程度上决定肥胖的程度。近年来的研究表明,氧化还原系统,尤其是抗氧化系统,对脂肪分化过程具有明显的调控作用。本文对抗氧化系统在调节脂肪分化方面的研究新进展做一回顾性综述,旨在为通过抗氧化系统调节脂肪分化继而干预肥胖及其相关病症提供理论基础。  相似文献   

3.
目的:探讨AMPK在脂肪细胞分化过程中的作用以及与脂滴相关表面蛋白Cidec的表达关系,为肥胖发生及其防治肥胖及肥胖相关性疾病提供重要的理论依据。方法:通过免疫组织化学、Real-time PCR和Western blot等方法分析AMPK和Cidec在脂肪细胞分化中的作用,明确二者的相关性。结果:在不同分化程度的脂肪源性肿瘤组织中,AMPK表达随着脂肪细胞分化程度的升高而表达降低,而Cidec的表达是逐渐增高的;在不同发育阶段的胎儿脂肪组织中,AMPK随着胎龄的增加表达逐渐降低(P0.01),而Cidec的表达则呈逐渐增高的趋势(P0.01);以上AMPKα的表达均与Cidec的表达水平呈负相关。结论:AMPK可能在脂肪细胞分化过程中扮演重要角色,研究其与Cidec的表达与作用关系可能为脂肪细胞发育及分化提供重要线索及依据。  相似文献   

4.
张进威  罗毅  王宇豪  何刘军  李明洲  王讯 《遗传》2015,37(12):1175-1184
脂肪组织不仅在维持机体能量代谢和稳态上发挥重要作用,同时也是重要的内分泌器官。脂肪细胞分化是由间充质干细胞(Mesenchymal stem cells, MSC)向成熟脂肪细胞分化的复杂生理过程,该过程由大量转录因子、激素、信号通路分子协同调控。miRNA作为内源性非编码RNA,主要通过抑制转录后翻译等机制来调控基因表达。近年来越来越多的证据表明miRNA通过调控脂肪细胞分化相关的转录因子和重要信号分子进而影响动物脂肪细胞的分化和脂肪形成。本文对miRNA影响动物白色、棕色和米色脂肪细胞分化的作用机制及其相关调控通路和关键因子进行了归纳总结,以期为肥胖等代谢性疾病的治疗提供一定的理论指导和新的治疗思路。  相似文献   

5.
促分裂原活化的蛋白激酶(MAPK)通路是一组丝氨酸/苏氨酸蛋白激酶,其家族控制着各种重要的生理性过程,包括细胞的生长、分化、增殖、死亡,主要有ERK、p38和JNK三条途径组成。现在肥胖已经成为多种疾病的危险因素,与胰岛素抵抗、高脂血症、2型糖尿病等都与肥胖有密切的联系。MAPK信号通路在脂肪细胞分化中起着非常重要的作用,深入的研究MAPK信号通路的在脂肪细胞中的调控作用,在预防肥胖及其引起的疾病治疗中,有着深远的意义。本文就MAPK信号通路对脂肪细胞分化的调控机制,其各个通路对脂肪细胞分化的正负调控及一些药物影响MAPK信号通路而影响脂肪细胞的分化,以及关于脂肪分化的一些新的研究做一综述。  相似文献   

6.
脂肪细胞的分化及调控   总被引:15,自引:0,他引:15  
越来越多的研究结果表明脂肪组织不仅仅是被动的能量储存器官 ,而且是能够分泌多种激素类物质的内分泌器官 ;脂肪细胞分化及其调控失常与人类多种疾病如肥胖症、糖尿病、脂肪肝、高脂血症及乳腺癌等密切相关。对脂肪细胞分化机制及其调控的研究 ,不但对于探讨上述重大生命和疾病过程具有重要理论意义 ,而且对于上述疾病的预防与治疗 ,特别是对于在细胞和分子水平上筛选针对上述疾病的药物 ,也具有实际意义。本文从脂肪细胞的起源、前脂肪细胞向脂肪细胞的分化过程、脂肪细胞分化的调控 ,以及对脂肪细胞分化研究应注意的问题等进行了综述 ,以期对脂肪细胞分化及其调控进行全面总结  相似文献   

7.
脂肪细胞分化及其调控的研究进展   总被引:1,自引:0,他引:1  
肥胖症等多种代谢疾病在全世界范围内的流行使得人们高度关注脂肪沉积调控的机制研究。在细胞水平上,脂肪组织的沉积是脂肪细胞数目增加和单个细胞体积增大的结果。其中,脂肪细胞数目由多潜能干细胞定向分化为前体脂肪细胞的程度决定,而单个细胞体积则与其分化程度和甘油三酯积累量相关。因此,揭示脂肪细胞分化的细胞和分子机制,将为上述代谢性疾病预防和治疗提供重要的理论基础。本文对脂肪细胞的起源、脂肪细胞分化的体外研究模型、脂肪细胞分化的规律和调控以及脂肪细胞分化研究中关键的问题等方面的研究成果进行总结,综述了近年来关于脂肪细胞分化及其调控的研究进展。  相似文献   

8.
在肥胖症中,脂肪组织中低度慢性炎症的积累可导致脂肪组织功能障碍和全身能量代谢失衡。低度全身炎症可能与一些代谢紊乱或心血管疾病和其他慢性疾病的恶化有关。脂肪细胞具有复杂的生物学特性,能够选择性地激活不同的代谢途径以响应环境刺激。研究表明,脂肪细胞在适当的刺激下可以容易地分化和去分化,从而根据代谢需要将自身转化成不同的表型。虽然其潜在的机制尚未完全明了,但脂肪细胞大小的增加和在过量喂养下不能储存甘油三酯对代谢功能失调至关重要,并表现为以炎症和凋亡途径激活及促炎脂肪因子分泌为特征。在肥胖症中,脂肪因子分泌的改变、脂肪细胞失衡和脂肪酸释放到循环系统中,有助于维持免疫细胞的激活和浸润到组织器官。最近研究发现,脂肪细胞还参与调节与肥胖炎症相关的巨噬细胞、中性粒细胞和调节性T细胞等免疫细胞的活性。了解脂肪细胞调节途径和去分化过程可能有助于研究抑制肥胖相关炎症和相关代谢紊乱的新策略。  相似文献   

9.
肥胖已经成了世界性的健康问题,肥胖是由于个体的吸收大于消耗而引起的,在细胞水平上,肥胖是由于脂肪细胞的数目增多或单个脂肪细胞体积增大引起的。脂肪的形成被分为两个阶段:第一阶段,新的脂肪细胞从间充质干细胞产生或者原有脂肪细胞通过去分化形成前脂肪细胞;第二阶段,前脂肪细胞通过终末分化形成成熟的脂肪细胞。脂肪的分化过程在前脂肪细胞系3T3-L1中被广泛的研究。该文综述了前脂肪细胞分化的调控机制,其中,主要涉及前脂肪细胞向终末分化细胞转化过程中的脂肪细胞关键基因表达调控因子过氧化物体增殖物受体γ(peroxisome proliferator-activated receptorγ,PPARγ)的表观遗传修饰及活化的PPARγ与CCAAT增强子结合蛋白家族(CCAAT/enhancer-binding protein,C/EBP)转录因子的协同作用,同时,也讨论了目前对脂肪分化作用方面的研究热点。  相似文献   

10.
间充质干细胞或前体脂肪细胞向成熟脂肪细胞分化的复杂过程对哺乳动物脂肪组织的形成和脂肪代谢至关重要。脂肪形成受激素和各种生脂转录因子的调控,这些生脂转录因子以级联转录的方式表达,促进脂肪细胞分化,最终导致成熟脂肪细胞表型的形成。micro RNAs(mi RNAs)属于small RNA家族,分子长度约为22个核苷酸。近几年研究表明,mi RNA参与了许多生物过程的调控,包括细胞分化、转录因子和/或其他基因的转录后调控。该文对mi RNAs在小鼠、人类和家畜体外模型中作为促生脂或抗生脂因子来调节脂肪生成的研究成果进行总结,以期为研究mi RNA调控哺乳脂肪生成的相关科研人员提供参考。  相似文献   

11.
郭云涛  苗向阳 《遗传》2015,37(3):240-249
MicroRNA(miRNA)是近年来在真核生物中发现的一类长约22nt的内源性非编码RNA,在动物中主要通过抑制靶mRNA翻译,在转录后水平调控基因表达。动物体内有两种类型的脂肪组织:褐色和白色脂肪,白色脂肪以甘油三脂形式贮存能量,而褐色脂肪利用甘油三酯产生能量。褐色脂肪因其对肥胖的拮抗作用而对研究肥胖等代谢疾病具有重要意义,大量研究表明miRNA在褐色脂肪细胞分化中扮演着重要角色,其自身也受到多种转录因子和环境因子调控,这个复杂的调控网络维持了体内脂肪组织稳态。文章主要综述了miRNA在褐色脂肪细胞分化中的最新研究进展,以期为利用miRNA进行肥胖、糖尿病等相关疾病及其并发症的治疗提供新思路。  相似文献   

12.
IntroductionObesity is usually triggered by a nutrient overload that favors adipocyte hypertrophy and increases the number of pro-inflammatory cells and mediators into adipose tissue. These mediators may be regulated by suppressors of cytokine signaling (SOCS), such as SOCS2, which is involved in the regulation of the inflammatory response of many diseases, but its role in obesity is not yet known. We aimed to investigate the role of SOCS2 in metabolic and inflammatory dysfunction induced by a high-refined carbohydrate-containing diet (HC).Material and methodsMale C57BL/6 wild type (WT) and SOCS2 deficient (SOCS2−/−) mice were fed chow or an HC diet for 8 weeks.ResultsIn general, SOCS2 deficient mice, independent of the diet, showed higher adipose tissue mass compared with their WT counterparts that were associated with decreased lipogenesis rate in adipose tissue, lipolysis in adipocyte culture and energy expenditure. An anti-inflammatory profile was observed in adipose tissue of SOCS2−/− by reduced secretion of cytokines, such as TNF and IL-6, and increased M2-like macrophages and regulatory T cells compared with WT mice. Also, SOCS2 deficiency reduced the differentiation/expansion of pro-inflammatory cells in the spleen but increased Th2 and Treg cells compared with their WT counterparts.ConclusionThe SOCS2 protein is an important modulator of obesity that regulates the metabolic pathways related to adipocyte size. Additionally, SOCS2 is an inflammatory regulator that appears to be essential for controlling the release of cytokines and the differentiation/recruitment of cells into adipose tissue during the development of obesity.  相似文献   

13.
Autophagy is a highly conserved self-digestion pathway involved in various physiological and pathophysiological processes. Recent studies have implicated a pivotal role of autophagy in adipocyte differentiation, but the molecular mechanism for its role and how it is regulated during this process are not clear. Here, we show that CCAAT /enhancer-binding protein β (C/EBPβ), an important adipogenic factor, is required for the activation of autophagy during 3T3-L1 adipocyte differentiation. An autophagy-related gene, Atg4b, is identified as a de novo target gene of C/EBPβ and is shown to play an important role in 3T3-L1 adipocyte differentiation. Furthermore, autophagy is required for the degradation of Klf2 and Klf3, two negative regulators of adipocyte differentiation, which is mediated by the adaptor protein p62/SQSTM1. Importantly, the regulation of autophagy by C/EBPβ and the role of autophagy in Klf2/3 degradation and in adipogenesis are further confirmed in mouse models. Our data describe a novel function of C/EBPβ in regulating autophagy and reveal the mechanism of autophagy during adipocyte differentiation. These new insights into the molecular mechanism of adipose tissue development provide a functional pathway with therapeutic potential against obesity and its related metabolic disorders.  相似文献   

14.
BackgroundHypoxia occurs within adipose tissue of obese human and mice. However, its role in adipose tissue regulation is still controversial.MethodsWe used murine preadipocyte 3T3-L1 cells and hypoxia was induced by using hypoxia mimetic agents, as CoCl2. To study adipocyte differentiation, we evaluated the adipocyte markers (PPARγ, C/EBPα and aP2), and a preadipocyte marker (pref-1) by qPCR, western blotting and immunofluorescence. Lipid accumulation was evaluated by Oil red-O assay and perilipin levels by western blotting and immunofluorescence. The effect of CoCl2 in microRNA, miR-27a and miR-27b, levels was evaluated by qPCR. We also assessed the mitochondrial membrane potential and reactive oxygen species (ROS), superoxide and ATP production. The effect of hypoxia mimetic in autophagy was determined by LC3B and p62 level evaluation by western blotting.ResultsOur results show that the hypoxia mimetic cobalt chloride increases lipid accumulation with no expression of PPARγ2. Furthermore, using qPCR we observed that the hypoxia mimetic increases microRNAs miR-27a and miR-27b, which are known to block PPARγ2 expression. In contrast, cobalt chloride induces mitochondrial dysfunction, and increases ROS production and autophagy. Moreover, an antioxidant agent, glutathione, prevents lipid accumulation induced by hypoxia mimetic indicating that ROS are responsible for hypoxia-induced lipid accumulation.ConclusionsAll these results taken together suggest that hypoxia mimetic blocks differentiation and induces autophagy. Hypoxia mimetic also induces lipid accumulation through mitochondrial dysfunction and ROS accumulation.General significanceThis study highlights the importance of adipocyte response to hypoxia, which might impair adipocyte metabolism and compromise adipose tissue function.  相似文献   

15.
miRNA是近年来发现的一类长约22 nt的内源性非编码RNA,在动物中主要通过抑制靶mRNA翻译,在转录后水平调控基因表达。大量研究表明脂肪组织中的miRNAs参与了脂肪细胞分化、脂代谢等多种生物过程调控,其自身也受到转录因子、脂肪细胞因子和环境因子等调控,这些复杂的相互作用关系构成了脂肪组织中miRNA的调控网络,循环miRNA的发现为这个网络加入了新元素。对肥胖等代谢疾病的研究,应该从这个复杂的动态网络中寻找答案。文中综述了脂肪组织中miRNA的最新研究进展,以期为利用miRNA进行肥胖等相关代谢失调疾病的治疗提供新思路。  相似文献   

16.
One of the major goals of this review was to identify obesity-specific gene profiles in animal models to help comprehend the pathogenic mechanisms and the prediction of the phenotypic outcomes of obesity and its associated metabolic diseases. The genomic examination of insulin-sensitive tissues, such as the adipose and hepatic tissues, has provided a wealth of information about the changes in gene expression in obesity and its associated metabolic diseases. The overexpression of genes related to inflammation, immune response, adhesion molecules, and lipid metabolism is a major characteristic of white adipose tissue, while the overexpression of the genes related to lipid metabolism, adipocyte differentiation, defense, and stress responses is noticeable in the non-alcoholic fatty liver of obese rodents. The hepatic-gene expression profiles led us to hypothesize that in obese rodents, the livers are supplied with large amounts of free fatty acids under conditions associated with obesity either through increased fatty acid biosynthesis or through decreased fatty acid oxidation, which may lead to increased mitochondrial respiratory activity. The wide list of genes that were identified in previous studies could be a source of potential therapeutic targets because most of these genes are involved in the key mechanisms of obesity development, from adipocyte differentiation to the disturbance of metabolism.  相似文献   

17.
Globally 30% of adults are overweight or obese. The white adipocyte is a major component of adipose tissue, and as the obesity epidemic increases it is critically important to understand the factors determining adipocyte development and function. Adipogenesis has two distinct phases; determination of the adipocyte from a multipotent stem cell, and terminal differentiation of a pre-adipocyte into a mature adipocyte. The environment encountered in early life can alter adipocyte number and size and potentially impact upon adipocyte endocrine function in adulthood. These alterations may contribute to the pathophysiology of chronic diseases and thus targeted therapy of the adipocyte has great potential for treating the current obesity epidemic.  相似文献   

18.
Obesity is characterized by uncontrolled expansion of adipose tissue mass, resulting in adipocyte hypertrophy (increased adipocyte size) and hyperplasia (increased number of adipocytes). The number of adipose cells is directly related to adipocyte differentiation process from stromal vascular cells to mature adipocytes. It is known that epigenetic factors influence adipose differentiation program. However, how specific epigenome modifiers affect white adipocyte differentiation and metabolic phenotype is still matter of research. Here, we provide evidence that class I histone deacetylases (HDACs) are involved both in the differentiation of adipocytes and in determining the metabolic features of these cells. We demonstrate that inhibition of class I HDACs from the very first stage of differentiation amplifies the differentiation process and imprints cells toward a highly oxidative phenotype. These effects are related to the capacity of the inhibitor to modulate H3K27 acetylation on enhancer regions regulating Pparg and Ucp1 genes. These epigenomic modifications result in improved white adipocyte functionality and metabolism and induce browning. Collectively, our results show that modulation of class I HDAC activity regulates the metabolic phenotype of white adipocytes via epigenetic imprinting on a key histone mark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号