首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
哺乳动物胚胎植入子宫后,随着原肠运动的发生,胚胎开始向三个胚层分化,同时生殖细胞开始形成和特化。胚胎最早期的生殖细胞被称为原始生殖细胞(primordial germ cell, PGC),雌雄原始生殖细胞增殖并迁移到生殖嵴,持续增殖后分别进入减数分裂前期和有丝分裂阻滞,分化形成卵原细胞和精原干细胞,经过复杂的发育过程分化形成卵母细胞和精子。该文回顾了小鼠和人类的原始生殖细胞的形成和特化过程,并且对小鼠和人类精原干细胞的分子特征和体外培养体系进行了总结。  相似文献   

3.
目的探讨TGIF2在胶质瘤中的表达及其对A172胶质瘤细胞增殖和迁移的影响。方法原位杂交技术检测TGIF2 mRNA在小鼠胚胎不同时间点脊髓中的表达;用GSE16011数据库和中国人临床样本检测TGIF2在胶质瘤样本和非癌脑组织中的表达水平;利用shRNA技术下调A172胶质瘤细胞TGIF2的表达后,分别通过CCK-8分析、划痕试验、凋亡蛋白检测研究TGIF2对胶质瘤细胞增殖、迁移和凋亡的影响。结果原位杂交显示,TGIF2 mRNA特异性表达在小鼠E11.5和E13.5脊髓的室管膜区域;TGIF2 mRNA在胶质瘤样本中的表达显著高于非癌脑组织;沉默TGIF-2的表达能显著抑制A172细胞的增殖和迁移能力,促进细胞凋亡。结论 TGIF2mRNA在胶质瘤中高表达;TGIF2可以增强细胞的增殖和迁移能力,抑制细胞凋亡,可能是脑癌诊疗的一个潜在的靶点基因。  相似文献   

4.
通过体外和体内模型研究光甘草定对小鼠黑色素瘤B16F10细胞增殖的抑制作用及其分子机制。B16F10细胞经光甘草定处理后可抑制其增殖,且具有浓度依赖性;诱导B16F10细胞凋亡,观察到明显的细胞凋亡状态,细胞内凋亡相关基因及蛋白Bax表达显著上升,Bcl-2则表达下调。进一步的研究发现,经光甘草定处理后的B16F10细胞中,培养基中葡萄糖含量升高,而ATP含量、乳酸生成均降低;细胞内糖酵解相关基因及蛋白HK2、Ldha表达下调。同时,经光甘草定处理后,移植瘤小鼠的肿瘤组织生长受到明显抑制,肿瘤组织内细胞凋亡率显著升高,Bax表达明显上升,而Bcl-2、HK2和Ldha则表达均下调。说明,光甘草定在一定浓度范围内抑制了小鼠黑色素瘤B16F10细胞的增殖,诱导细胞凋亡,而其诱导细胞凋亡的机制可能与调控糖酵解相关基因的表达相关。  相似文献   

5.
研究紫铆因对人食管鳞癌细胞增殖和存活的影响。通过MTS和软琼脂集落实验检测紫铆因对食管鳞癌增殖的抑制,生化分析仪检测紫铆因对食管鳞癌糖酵解的影响,并利用免疫印迹检测紫铆因对食管鳞癌细胞增殖和凋亡激活相关蛋白分子的表达。结果发现紫铆因剂量依赖性抑制KYSE150和Eca109细胞增殖,下调EGFR信号通路活化,抑制HK2的表达及糖酵解。一定浓度的紫铆因能诱导食管鳞癌细胞发生凋亡,caspase3和PARP被剪切,Bcl-2和Mcl-1表达下调,但Bcl-XL未见明显改变。结果证明紫铆因抑制食管鳞癌的增殖,可能与EGFR信号通路和糖酵解被抑制,及促存活蛋白Bcl-2和Mcl-1的表达下调有关。  相似文献   

6.
胚胎生殖细胞(embryonic germ cell,EGC)是由胎儿原始生殖细胞(primordial germ cell,PGC)经体外驯化培养获得的一种多潜能干细胞。研究猪PGC生物学特性对于建立猪EGC及了解猪生殖细胞发育机制具有重要意义。该研究以原代培养的猪PGC为对象,探讨了其生长行为特征及其重编程过程中多能性、生殖系标志基因的表达模式。结果显示,26 d胚胎生殖嵴分离的PGC呈碱性磷酸酶阳性,细胞体积及核质比较大;体外培养初期呈现出较强的增殖及迁移能力,培养第5 d细胞增殖达到平台期,此时克隆高表达Oct4、Sox2、Nanog、c-Myc、Klf4和Ifi tm3(P〈0.05),低表达Blimp1(P〈0.05),Nanos1和Stella的表达水平与猪胎儿成纤维细胞无差异;猪PGC形成的原代克隆已经具有多向分化潜能。  相似文献   

7.
小鼠原生殖细胞体外培养及其应用研究   总被引:3,自引:0,他引:3  
许新  严缘昌特 《生命科学》1999,11(3):114-116
原生殖细胞(primordialgermcell,PGC)是胚胎生殖谱系最原始形式的细胞,在体胚胎迁移期PGC增殖极为旺盛。体外培养的小鼠迁移期PGC在饲养层细胞和三种生长因子(干细胞生长因子、碱性成纤维细胞生长因子及白血病抑制因子)的共同作用下,可发展为长期增殖并维持不分化状态的胚胎性干细胞,即胚胎生殖细胞(embryonicgermcell,EG),具全能性发育潜能。EG建系成功对于研究生殖细胞发育以及寻找新的转基因动物操作的有效载体具有重要价值。  相似文献   

8.
鸡胚胎生殖细胞在鼠胚成纤维细胞饲养层上的生长   总被引:1,自引:0,他引:1  
目的:探讨以鼠胚成纤维细胞为饲养层分离、培养鸡胚胎生殖细胞的方法和条件。方法:分离、培养12.5~13.5d鼠胚成纤维细胞。分离孵化5.5d鸡胚原始生殖细胞,原代培养时不使用饲养层,与性腺基质细胞共培养;继代培养时将其置于鼠胚成纤维细胞饲养层上,在含生长因子、分化抑制因子的培养体系中培养胚胎生殖细胞。结果:鼠胚成纤维细胞可连续传代18代以上(4个月),3~15代细胞可以用作饲养层细胞。分离的鸡胚胎生殖细胞在饲养层上可增殖形成典型胚胎生殖细胞集落,并能连续在体外培养超过9代。集落未分化标志高碘酸希夫反应(PAS)呈强阳性,体外分化实验表明胚胎生殖细胞具有多能性。结论:用鼠胚成纤维细胞作为饲养层能获得可连续增殖的胚胎生殖细胞。  相似文献   

9.
为了探讨miR-148a及己糖激酶2(hexokinase 2,HK2)基因对人乳腺癌细胞糖酵解代谢途径的影响和可能机制,利用实时荧光定量PCR(real-time fluorescent quantitative PCR,qRT-PCR)检测多种乳腺癌细胞系中miR-148a的表达量,从中筛选miR-148a表达量相对较低的乳腺癌细胞系作为研究对象。再通过观察miR-148a表达量的变化对乳腺癌细胞葡萄糖摄取量、乳酸生成量和细胞增殖指标的影响,以探究miR-148a对乳腺癌细胞糖代谢能力的影响。随后,通过TargetScan在线数据库预测miR-148a和HK2基因的靶向关系,再通过双荧光素酶报告实验、Western免疫印迹以及基因回复实验进行验证,以进一步明确miR-148a和HK2在乳腺癌细胞的糖酵解代谢途径中的作用机制。通过qRT-PCR发现miR-148a在多种乳腺癌细胞系表达降低,尤其是在乳腺癌细胞系MDA-MB231中表达量显著降低(P<0.000 1)。过表达miR-148a使MDA-MB231细胞的葡萄糖摄取量、乳酸生成量、细胞增殖指标均显著下降(P<0.01);而抑制miR-148a表达使MDA-MB231细胞葡萄糖摄取量、乳酸生成量、细胞增殖指标均显著上升(P<0.01)。通过TargetScan在线数据库预测得出,miR-148a与HK2基因3′非编码区(3′-untranslated region,3′-UTR)具有部分结合位点;而双荧光素酶报告实验发现miR-148a与野生型HK2基因的3′-UTR荧光素酶报告载体结合,不与突变型HK2基因的3′-UTR结合。Western免疫印迹检测结果表明,过表达miR-148a使MDA-MB231细胞中HK2蛋白表达量显著下降(P<0.000 1),而抑制miR-148a表达则促进HK2蛋白表达量显著上升(P<0.05)。基因回复实验显示,过表达HK2基因使MDA-MB231乳腺癌细胞的葡萄糖摄取量、乳酸生成量、细胞增殖指标显著上升(P<0.01);将过表达miR-148a载体与过表达HK2载体共转染MDA-MB231细胞,miR-148a逆转了HK2所致的葡萄糖摄取量增加和乳酸生成量上升,并抑制细胞增殖。因此,研究提示,miR-148a可通过靶向抑制HK2基因表达而抑制乳腺癌细胞MDA-MB231糖酵解代谢和细胞增殖。  相似文献   

10.
胚胎及生后不同发育时期大鼠睾丸生殖细胞的凋亡   总被引:1,自引:0,他引:1  
目的 探索雄性生殖细胞在发育过程中凋亡的特征和规律。方法 利用改进的石蜡切片原位末端标记法(TUNEL法)观察SD大鼠睾丸生殖细胞,对胚胎及生后不同阶段生殖细胞凋亡进行研究。结果 胚胎第13.5天原始生殖细胞即有较高的凋亡率,胚胎第19.5天到出生后第1天,未检测到凋亡生殖细胞,出生后第7天精原细胞分裂增生,伴有较高的凋亡率,与其他各年龄组有显著性差异。出生后第14天精母细胞凋亡率最高,与其他日龄组有显著性差异。结论 SD大鼠雄性生殖细胞发生,发育,成熟过程中都存在凋亡,主要发生在处于细胞增殖过程中的原始生殖细胞,精原细胞和初级精母细胞。  相似文献   

11.
12.
During mouse fetal development, meiosis is initiated in female germ cells only, with male germ cells undergoing mitotic arrest. Retinoic acid (RA) is degraded by Cyp26b1 in the embryonic testis but not in the ovary where it initiates the mitosis/meiosis transition. However the role of RA status in fetal germ cell proliferation has not been elucidated. As expected, using organ cultures, we observed that addition of RA in 11.5 days post-conception (dpc) testes induced Stra8 expression and meiosis. Surprisingly, in 13.5 dpc testes although RA induced Stra8 expression it did not promote meiosis. On 11.5 and 13.5 dpc, RA prevented male germ cell mitotic arrest through PI3K signaling. Therefore 13.5 dpc testes appeared as an interesting model to investigate RA effects on germ cell proliferation/differentiation independently of RA effect on the meiosis induction. At this stage, RA delayed SSEA-1 extinction, p63γ expression and DNA hypermethylation which normally occur in male mitotic arrested germ cells. In vivo, in the fetal male gonad, germ cells cease their proliferation and loose SSEA-1 earlier than in female gonad and RA administration maintained male germ cell proliferation. Lastly, inhibition of endogenous Cyp26 activity in 13.5 dpc cultured testes also prevented male germ cell mitotic arrest. Our data demonstrate that the reduction of RA levels, which occurs specifically in the male fetal gonad and was known to block meiosis initiation, is also necessary to allow the establishment of the germ cell mitotic arrest and the correct further differentiation of the fetal germ cells along the male pathway.  相似文献   

13.
In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme, CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1 expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male germ cells during embryonic development.  相似文献   

14.
15.
Nanog expression in mouse germ cell development   总被引:12,自引:0,他引:12  
  相似文献   

16.
Primordial germ cells (PGCs) are embryonic founders of germ cells that ultimately differentiate into oocytes and spermatogonia. Embryonic proliferation of PGCs starting from E11.5 ensures the presence of germ cells in adulthood, especially in female mammals whose total number of oocytes declines after this initial proliferation period. To better understand mechanisms underlying PGC proliferation in female mice, we constructed a proteome profile of female mouse gonads at E11.5. Subsequent KEGG pathway analysis of the 3,662 proteins profiled showed significant enrichment of pathways involved in fatty acid degradation. Further, the number of PGCs found in in vitro cultured fetal gonads significantly decreased with application of etomoxir, an inhibitor of the key rate-limiting enzyme of fatty acid degradation carnitine acyltransferase I (CPT1). Decrease in PGCs was further determined to be the result of reduced proliferation rather than apoptosis. The inhibition of fatty acid degradation by etomoxir has the potential to activate the Ca2+/CamKII/5′-adenosine monophosphate-activated protein kinase (AMPK) pathway; while as an upstream activator, activated AMPK can function as activator of p53 to induce cell cycle arrest. Thus, we detected the expressional level of AMPK, phosphorylated AMPK (P-AMPK), phosphorylated p53 (P-p53) and cyclin-dependent kinase inhibitor 1 (p21) by Western blots, the results showed increased expression of them after treatment with etomoxir, suggested the activation of p53 pathway was the reason for reduced proliferation of PGCs. Finally, the involvement of p53-dependent G1 cell cycle arrest in defective proliferation of PGCs was verified by rescue experiments. Our results demonstrate that fatty acid degradation plays an important role in proliferation of female PGCs via the p53-dependent cell cycle regulation.  相似文献   

17.
《Reproductive biology》2022,22(1):100603
DNA double-strand break (DSB) repair is crucial to maintain genomic stability for sufficient ovarian reserve. It remains unknown the changes of DSBs formation and DNA repair in germ cells during ovarian reserve formation in FVB/N mice. We demonstrated germ cell numbers increased significantly (all P < 0.05) from E11.5 to E13.5 and decreased significantly (all P> 0.05) until P2. OCT4 and SOX2 analyses indicated pluripotency peaks at E13.5 then decreases significantly (all P 0.05) until P2. γH2AX analyses revealed DSB formation significantly (P < 0.05) increased from E13.5 until P2. RAD51 and DMC1 data revealed homologous recombination (HR) pathway repair of DSBs is persistent active during meiosis (E13.5- P2) (all P> 0.05). 53BP1 and KU70 data indicate the non-homologous end-joining pathway (NHEJ) remains active during meiosis. 53BP1 expression was highest at E13.5 (P < 0.05). KU70 expression was higher in germ cells from E15.5 to P2 (all < P 0.05). PH3 and KI67 analyses revealed germ cell proliferation was not significantly different (all P> 0.05) from E13.5 to P2. Caspase-3 and TUNEL analyses showed germ cells apoptosis was not significantly different (all P > 0.05) from E13.5 to P2. In conclusion, we found both germ cell number and pluripotency peak at E13.5 and decline during meiosis. We demonstrated HR and NHEJ continually repair DSBs during meiosis. RAD51 and DMC1 are continuously expressed during meiosis. 53BP1 is mainly expressed at E13.5. KU70 continually functions from E15.5 to P2. Proliferating and apoptotic cells were rarely detected during meiosis. Results provide a basis for further study of how DSBs and DNA repair affect germ cell development.  相似文献   

18.
Estrogen related receptor beta (ERR-beta) is an orphan nuclear receptor specifically expressed in a subset of extra-embryonic ectoderm of post-implantation embryos. ERR-beta is essential for placental development since the ERR-beta null mutants die at 10.5dpc due to the placenta abnormality. Here, we show that the ERR-beta is specifically expressed in primordial germ cells (PGC), obviously another important cell type for reproduction. Expression of the ERR-beta mRNA in embryonic germ cells started at E11.5 as soon as PGC reached genital ridges, and persisted until E15-E16 in both sexes. Immunostaining with anti-ERR-beta antibody revealed that the ERR-beta protein is exclusively expressed in germ cells in both male and female gonads from E11.5 to E16. 5. To study function of the ERR-beta in PGC, we complemented placental defects of the ERR-beta null mutants with wild-type tetraploid embryos, and analyzed germ cell development in the rescued embryos. It was found that development of gonad and PGC was not apparently affected, but number of germ cells was significantly reduced in male and female gonads, suggesting that the ERR-beta appears to be involved in proliferation of gonadal germ cells. The rescued embryos could develop to term and grow up to adulthood. The rescued ERR-beta null male were found to be fertile, but both male and female null mutants exhibited behavioural abnormalities, implying that the ERR-beta plays important roles in wider biological processes than previously thought.  相似文献   

19.
20.
Objectives: The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time‐ and labour‐consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier method, also enabling estimation of the fraction of cells in S or S+G2+M (SG2M) cell‐cycle phases as indicators of cell proliferation. Methods: Cell suspensions from 35 human embryonic gonads at days 37 to 68 post‐conception (pc) were immunomagnetically sorted into C‐KIT positive (germ) cells and negative (somatic) cells. They were stained for DNA content and analysed by flow cytometry. S and SG2M fractions could be measured for 13 of the female and 20 of the male gonads. The number of cells was estimated using fluorescent reference beads. Results: During the period from 37 to 68 days pc, female germ and somatic cells had a stable S and SG2M fractions indicating steady growth of both subpopulations, whereas they decreased in both male germ and somatic cells. The number of germ and somatic cells estimated by flow cytometry was significantly lower than in stereological estimates, suggesting loss of cells during preparation. Conclusions: Cell proliferation as indicated by S and SG2M fractions could be estimated specifically for primordial germ and somatic cells. Estimation of total number of germ and somatic cells was not feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号