首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
AIMS: The predicted survival of Bacillus subtilis 168 spores from a polynomial regression equation was validated in milk. METHODS AND RESULTS: Bias factor suggested as an index of model performance was used to validate the polynomial model predictions in ultrahigh temperature (UHT) treated and sterilized whole and skim milk. Model predictions were fail safe, predicting higher D-values (decimal reduction times) in buffer than actually noted in milk. CONCLUSIONS: The D-values for spores were lower in milk as compared with those predicted in potassium phosphate buffer contrary to the popular expectation of better spore survival in complex food systems. The Bias factor, a quantitative measure of the model performance, indicated that on average the model predictions exceed the observations by 40% in the case of whole milk and by 60% in the case of skim milk. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work is an attempt to ascertain the extent of reliability that one can safely place in polynomial model predictions, without compromising on the safety or palatability of foods where it is eventually intended to be applied. The work has also highlighted the differences in the thermal inactivation pattern of spores in buffer and in milk with a possible influence of the various constituents of milk. The work will assist the dairy industry to better design thermal processes to ensure longer shelf life of dairy foods.  相似文献   

2.
Aims:  The aim of this work was to investigate the germination and inactivation of spores of Bacillus species in buffer and milk subjected to high pressure (HP) and nisin.
Methods and Results:  Spores of Bacillus subtilis and Bacillus cereus suspended in milk or buffer were treated at 100 or 500 MPa at 40°C with or without 500 IU ml−1 of nisin. Treatment at 500 MPa resulted in high levels of germination (4 log units) of B. subtilis spores in both milk and buffer; this increased to >6 logs by applying a second cycle of pressure. Viability of B. subtilis spores in milk and buffer was reduced by 2·5 logs by cycled HP, while the addition of nisin (500 IU ml−1) prior to HP treatment resulted in log reductions of 5·7 and 5·9 in phosphate buffered saline and milk, respectively. Physical damage of spores of B. subtilis following HP was apparent using scanning electron microscopy. Treating four strains of B. cereus at 500 MPa for 5 min twice at 40°C in the presence of 500 IU ml−1 nisin proved less effective at inactivating the spores of these isolates compared with B. subtilis and some strain-to-strain variability was observed.
Conclusions:  Although high levels of germination of Bacillus spores could be achieved by combining HP and nisin, complete inactivation was not achieved using the aforementioned treatments.
Significance and Impact of the Study:  Combinations of HP treatment and nisin may be an appealing alternative to heat pasteurization of milk.  相似文献   

3.
AIMS: To compare the relative sensitivity of Bacillus anthracis and spores of other Bacillus spp. deposited on different solid surfaces to inactivation by liquid chemical disinfecting agents. METHODS AND RESULTS: We prepared under similar conditions spores from five different virulent and three attenuated strains of B. anthracis, as well as spores of Bacillus subtilis, Bacillus atrophaeus (previously known as Bacillus globigii), Bacillus cereus, Bacillus thuringiensis and Bacillus megaterium. As spore-surface interactions may bias inactivation experiments, we evaluated the relative binding of different spores to carrier materials. The survival of spores deposited on glass, metallic or polymeric surfaces were quantitatively measured by ASTM standard method E-2414-05 which recovers spores from surfaces by increasing stringency. The number of spores inactivated by each decontaminant was similar and generally within 1 log among the 12 different Bacillus strains tested. This similarity among Bacillus strains and species was observed through a range of sporicidal efficacy on spores deposited on painted metal, polymeric rubber or glass. CONCLUSIONS: The data obtained indicate that the sensitivity of common simulants (B. atrophaeus and B. subtilis), as well as spores of B. cereus, B. thuringiensis, and B. megaterium, to inactivation by products that contain either: peroxide, chlorine or oxidants is similar to that shown by spores from all eight B. anthracis strains studied. SIGNIFICANCE AND IMPACT OF THE STUDY: The comparative results of the present study suggest that decontamination and sterilization data obtained with simulants can be safely extrapolated to virulent spores of B. anthracis. Thus, valid conclusions on sporicidal efficacy could be drawn from safer and less costly experiments employing non-pathogenic spore simulants.  相似文献   

4.
The effect of potassium ion on L-alanine-inosine-induced germination of unactivated spores of Bacillus cereus T was studied. Unactivated spores germinated in 0.1 M sodium phosphate buffer (NaPB), but not 0.1 M potassium phosphate buffer (KPB), at pH 8.0 and at 30 C. Inhibition of germination was also observed on incubation of unactivated spores in NaPB containing potassium chloride. Previously it was demonstrated that germination of unactivated spores involves at least two steps, one induced by L-alanine, and the other by inosine. Potassium ion seems to inhibit the response of the spores to inosine, because: (1) Spores that had been preincubated with L-alanine in NaPB or KPB, germinated in NaPB but not KPB in the presence of inosine. (2) During germination in NaPB, incorporation of L-[14C]alanine showed bimodal kinetics with a rapid first phase and a second continuous phase, but in KPB the second phase of incorporation did not occur. The events occurring before germination of unactivated spores are discussed with reference to the initiation of germination.  相似文献   

5.
AIMS: To investigate the presence and numbers of Bacillus spp. spores in surface waters and examine isolates belonging to the B. cereus and B. subtilis groups for cytotoxicity, and to discuss the presence of cytotoxic Bacillus spp. in surface water as hazard identification in a risk assessment approach in the food industry. METHODS AND RESULTS: Samples from eight different rivers with variable degree of faecal pollution, and two drinking water sources, were heat shocked and examined for the presence of Bacillus spp. spores using membrane filtration followed by cultivation on bovine blood agar plates. Bacillus spp. was present in all samples. The numbers varied from 15 to 1400 CFU 100 ml(-1). Pure cultures of 86 Bacillus spp. isolates representing all sampling sites were characterized using colony morphology, atmospheric requirements, spore and sporangium morphology, and API 50 CHB and API 20E. Bacillus spp. representing the B. cereus and B. subtilis groups were isolated from all samples. Twenty-one isolates belonging to the B. cereus and B. subtilis groups, representing eight samples, were screened for cytotoxicity. Nine strains of B. cereus and five strains belonging to the B. subtilis group were cytotoxic. CONCLUSIONS: The presence of cytotoxic Bacillus spp. in surface water represents a possible source for food contamination. Filtration and chlorination of surface water, the most common drinking water treatment in Norway, do not remove Bacillus spores efficiently. This was confirmed by isolation of spores from tap water samples. SIGNIFICANCE AND IMPACT OF THE STUDY: Contamination of food with water containing low numbers of Bacillus spores implies a risk for bacterial growth in foods. Consequently, high numbers of Bacillus spp. may occur after growth in some products. High numbers of cytotoxic Bacillus spp. in foods may represent a risk for food poisoning.  相似文献   

6.
AIMS: To measure rates of release of small molecules during pressure germination of Bacillus subtilis spores, and the role of SpoVA proteins in dipicolinic acid (DPA) release. METHODS AND RESULTS: Rates of DPA release during B. subtilis spore germination with pressures of 150 or 500 megaPascals were much higher in spores with elevated levels of SpoVA proteins, and spores with a temperature-sensitive mutation in the spoVA operon were temperature-sensitive in DPA release during pressure germination. Spores also released arginine and glutamic acid, but not AMP, during pressure germination. CONCLUSIONS: Pressure germination of B. subtilis spores causes release of many small molecules including DPA. SpoVA proteins are involved in the release of DPA, perhaps because SpoVA proteins are a component of a DPA channel in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of pressure germination of spores of Bacillus species, a process that has significant potential for usage in the food industry.  相似文献   

7.
Air-dried films of Escherichia coli, Saccharomyces cerevisiae, and Bacillus subtilis spores on membrane filters, exposed to 10 min full power (650 W, 2450 MHz) irradiation in a Toshiba model ER776BT microwave oven, showed a 5-, 2-, and 0-log reduction of viable organisms respectively. Suspensions of cells or spores in phosphate buffer treated under similar conditions showed 8 logs of killing within 30 s (S. cerevisiae), 45 s(E. coli), and by 10 min (B. subtilis spores) of exposure.  相似文献   

8.
Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.  相似文献   

9.
AIMS: To determine the mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside (beta-MUG) by germinating and outgrowing spores of Bacillus species. METHODS AND RESULTS: Spores of B. atrophaeus (formerly B. subtilis var. niger, Fritze and Pukall 2001) are used as biological indicators of the efficacy of ethylene oxide sterilization by measurement of beta-MUG hydrolysis during spore germination and outgrowth. It was previously shown that beta-MUG is hydrolysed to 4-methylumbelliferone (MU) during the germination and outgrowth of B. atrophaeus spores (Chandrapati and Woodson 2003), and this was also the case with spores of B. subtilis 168. Germination of spores of either B. atrophaeus or B. subtilis with chloramphenicol reduced beta-MUG hydrolysis by almost 99%, indicating that proteins needed for rapid beta-MUG hydrolysis are synthesized during spore outgrowth. However, the residual beta-MUG hydrolysis during spore germination with chloramphenicol indicated that dormant spores contain low levels of proteins needed for beta-MUG uptake and hydrolysis. With B. subtilis 168 spores that lacked several general proteins of the phosphotransferase system (PTS) for sugar uptake, beta-MUG hydrolysis during spore germination and outgrowth was decreased >99.9%. This indicated that beta-MUG is taken up by the PTS, resulting in the intracellular accumulation of the phosphorylated form of beta-MUG, beta-MUG-6-phosphate (beta-MUG-P). This was further demonstrated by the lack of detectable glucosidase activity on beta-MUG in dormant, germinated and outgrowing spore extracts, while phosphoglucosidase active on beta-MUG-P was readily detected. Dormant B. subtilis 168 spores had low levels of at least four phosphoglucosidases active on beta-MUG-P: BglA, BglH, BglC (originally called YckE) and BglD (originally called YdhP). These enzymes were also detected in spores germinating and outgrowing with beta-MUG, but levels of BglH were the highest, as this enzyme's synthesis was induced ca 100-fold during spore outgrowth in the presence of beta-MUG. Deletion of the genes coding for BglA, BglH, BglC and BglD reduced beta-MUG hydrolysis by germinating and outgrowing spores of B. subtilis 168 at least 99.7%. Assay of glucosidases active on beta-MUG or beta-MUG-P in extracts of dormant and outgrowing spores of B. atrophaeus revealed no enzyme active on beta-MUG and one enzyme that comprised > or =90% of the phosphoglucosidase active on beta-MUG-P. Partial purification and amino-terminal sequence analysis of this phosphoglucosidase identified this enzyme as BglH. CONCLUSIONS: Generation of MU from beta-MUG by germinating and outgrowing spores of B. atrophaeus and B. subtilis is mediated by the PTS-driven uptake and phosphorylation of beta-MUG, followed by phosphoglucosidase action on the intracellular beta-MUG-P. The major phosphoglucosidase catalyzing MU generation from beta-MUG-P in spores of both species is probably BglH. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of uptake and hydrolysis of beta-MUG by germinating and outgrowing spores of Bacillus species, in particular B. atrophaeus. The research reported here provides a biological basis for a Rapid Readout Biological Indicator that is used to monitor the efficacy of ethylene oxide sterilization.  相似文献   

10.
AIMS: To compare the disinfection ability of two widely used electrolytic generation systems (ClorTec and MIOX) and the conventional chlorine disinfectant (sodium hypochlorite) using three strains of Bacillus subtilis spores and MS2 bacteriophage. METHODS AND RESULTS: Three B. subtilis aerobic spore strains (ATCC1A1, 35021 and 35946) and the bacteriophage MS2 (ATCC 15597-B1) were propagated and sporulated. Four indicator organisms were exposed to four disinfectant treatments for comparing the effectiveness of inactivation: hypochlorite, ClorTec, MIOX and MIOX-anode. The results indicated that the two electrolytic generation systems were as effective as the conventional chlorination for the inactivation of micro-organisms used. Some data points showed the variation using anova analysis, in which the inactivation of MIOX and ClorTec was higher than that of hypochlorite. CONCLUSIONS: The ClorTec and MIOX systems are quite similar to hypochlorite in the inactivation-effectiveness for aerobic spores and bacteriophage in drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY: Laboratory-scale investigation proved that gaseous chlorine could be replaced by either ClorTec or MIOX systems for the drinking water treatment utilities, which still could maintain the same disinfection efficiency.  相似文献   

11.
The activity of glucose dehydrogenase present in resting spores of Bacillus subtilis varied strikingly with the conditions for disrupting the spores by sonic treatment, namely, the time and strength of sonication, and the type and pH of the solution used for suspending the spores. When the resting spores were sonicated for 30 min at a current of 1.45 A in 100 mM phosphate buffer in the range of pH 6.0 to 6.6 or in deionized water, the enzyme activity of the former suspension was approximately 10 times higher than that of the latter suspension. However, the enzyme activity of the latter was markedly stimulated in the presence of sodium chloride. The glucose dehydrogenase from resting spores disrupted in 100 mM phosphate buffer (pH 6.6) was a salt-independent, active enzyme with a molecular weight of about 120,000, whereas the enzyme from resting spores disrupted in deionized water was a salt-dependent, inactive one with a molecular weight of about 55,000. A high concentration of dipicolinic acid strongly inhibited activation by a salt of inactive glucose dehydrogenase from resting spores in deionized water, suggesting one of its several important roles in vivo.  相似文献   

12.
AIMS: The mechanism of the inactivation of Bacillus subtilis spores by reciprocal pressurization (RP) was unclear. Therefore, the mechanism was investigated. METHODS AND RESULTS: To investigate the effects of RP and continuous pressurization (CP) treatments on the inactivation and injury of B. subtilis spores, spores were treated at 25, 35, 45 and 55 degrees C under 200, 300 and 400 MPa. RP treatment was effective in injuring and inactivating spores. Scanning electron microscopy and transmission electron microscopy observation showed that spores treated by RP treatment were more morphologically and structurally changed than the ones treated by CP treatment. There were significant differences between the release of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by RP and CP treatments. From this result, it was concluded that the core fraction was released into the spore suspension. CONCLUSIONS: The mechanism of RP treatment is believed to work as follows: hydrostatic pressure treatment initiated germination of bacterial spores, and the repeated rapid decompression caused disruption, injury and inactivation of the germinated spores. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicated that the physical injury of bacterial spores was effective to inactivate the bacterial spores through the disruption of spores and leakage of their contents.  相似文献   

13.
This study is aimed at the development and application of a convenient and rapid optical assay to monitor the wet-heat resistance of bacterial endospores occurring in food samples. We tested the feasibility of measuring the release of the abundant spore component dipicolinic acid (DPA) as a probe for heat inactivation. Spores were isolated from the laboratory type strain Bacillus subtilis 168 and from two food product isolates, Bacillus subtilis A163 and Bacillus sporothermodurans IC4. Spores from the lab strain appeared much less heat resistant than those from the two food product isolates. The decimal reduction times (D values) for spores from strains 168, A163, and IC4 recovered on Trypticase soy agar were 1.4, 0.7, and 0.3 min at 105 degrees C, 120 degrees C, and 131 degrees C, respectively. The estimated Z values were 6.3 degrees C, 6.1 degrees C, and 9.7 degrees C, respectively. The extent of DPA release from the three spore crops was monitored as a function of incubation time and temperature. DPA concentrations were determined by measuring the emission at 545 nm of the fluorescent terbium-DPA complex in a microtiter plate fluorometer. We defined spore heat resistance as the critical DPA release temperature (Tc), the temperature at which half the DPA content has been released within a fixed incubation time. We found Tc values for spores from Bacillus strains 168, A163, and IC4 of 108 degrees C, 121 degrees C, and 131 degrees C, respectively. On the basis of these observations, we developed a quantitative model that describes the time and temperature dependence of the experimentally determined extent of DPA release and spore inactivation. The model predicts a DPA release rate profile for each inactivated spore. In addition, it uncovers remarkable differences in the values for the temperature dependence parameters for the rate of spore inactivation, DPA release duration, and DPA release delay.  相似文献   

14.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

15.
Suspensions of Bacillus cereus T, B. subtilis, and B. pumilus spores in water or potassium phosphate buffer were germinated by hydrostatic pressures of between 325 and 975 atm. Kinetics of germination at temperatures within the range of 25 to 44 degrees C were determined, and thermodynamic parameters were calculated. The optimum temperature for germination was dependent on pressure, species, suspending medium, and storage time after heat activation. Germination rates increased significantly with small increments of pressure, as indicated by high negative deltaV values of -230 +/- 5 cm3/mol for buffered B. subtilis (500 to 700 atm) and B. pumilus (500 atm) spores and -254 +/- 18 cm3/mol for aqueous B. subtilis (400 to 550 atm) spores at 40 degrees C and -612 +/- 41 cm3/mol for B. cereus (500 to 700 atm) spores at 25 degrees C. The ranges of thermodynamic constants calculated at 40 degrees C for buffered B. pumilus and B. subtilis spores at 500 and 600 atm and for aqueous B. subtilis spores at 500 atm were: Ea = 181,000 to 267,000 J/mol; deltaH = 178,000 to 264,000 J/mol; deltaG = 94,000 to 98,300 J/mol; deltaS = 264 to 544 J/mol per degree K. These values are consistent with the concept that the transformation of a dormant to a germinating spore induced by hydrostatic pressure involves either hydration or a reduction in the visocosity of the spore core and a conformational change of an enzyme.  相似文献   

16.
Survival of Bacillus subtilis strain 168 containing plasmid pAB224, which carries a gene for tetracycline resistance, was studied in mushroom compost under mesophilic and thermophilic conditions. Stable populations of B. subtilis were maintained as spores in both sterile and fresh mushroom compost incubated at 37 degrees C. At 65 degrees C, the introduced B. subtilis populations declined during incubation but spores were still detectable after 28 d. Survival at the higher temperature was greater in fresh than in sterile compost. There was no apparent loss of plasmid pAB224 or plasmid-determined phenotype from the introduced B. subtilis population at either incubation temperature. The frequency of tetracycline resistance in the indigenous Bacillus population was very low (10(-5), but some tetracycline-resistant isolates contained plasmid DNA. Four plasmid DNA profiles were found associated with five Bacillus phenotypes, and some evidence for homology with pAB224 was found. However, pAB224 was found to be a suitable marker for release studies because it was easily recovered, readily distinguished from indigenous plasmids on agarose gels, and was maintained in compost-grown B. subtilis 168 in the absence of any selective pressure.  相似文献   

17.
Stainless steel surfaces coated with paints containing a silver- and zinc-containing zeolite (AgION antimicrobial) were assayed in comparison to uncoated stainless steel for antimicrobial activity against vegetative cells and spores of three Bacillus species, namely, B. anthracis Sterne, B. cereus T, and B. subtilis 168. Under the test conditions (25 degrees C and 80% relative humidity), the zeolite coating produced approximately 3 log(10) inactivation of vegetative cells within a 5- to 24-h period, but viability of spores of the three species was not significantly affected.  相似文献   

18.
同步辐射软X射线对枯草杆菌的诱变效应   总被引:5,自引:0,他引:5  
采用同步辐射软X射线对枯草芽孢杆菌(Bacillus subtilis)1831菌株进行辐照处理,研究了不同剂量下3.1nm的软X射线对其芽孢的失活和诱变作用。结果表明:同步辐射软X射线对枯草杆菌芽孢的剂量存活曲线表现为典型的“肩型”,对芽孢的失活作用属于“单靶多击”方式,失活击中数等于3。根据脱脂牛奶平板上蛋白酶活力大小的测量统计,以变异系数作为诱变效应指标,软X射线对芽孢具有一定的诱变作用。  相似文献   

19.
AIMS: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. METHODS AND RESULTS: Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. CONCLUSIONS: Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.  相似文献   

20.
Sublethally heated spores of Bacillus subtilis NCTC 8236 were susceptible to posttreatment concentrations in agar of polymyxin B sulphate, sodium hydroxide, cetylpyridinium chloride and sodium lauryl sulphate that did not prevent colony formation to untreated spores. The non-ionic surfactants polysorbates 20 and 80 were not inhibitory when used at high concentrations against both heated and unheated spores. The method has been developed for detecting sublethal injury in biocide-exposed spores, since iodine-treated spores became highly susceptible to polymyxin contained in recovery agar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号