首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
T N?rgaard 《Histochemistry》1979,63(1):103-113
A quantitative fluorimetric method is described for estimating the activity of glucose-6-phosphate dehydrogenase in isolated fractions of rabbit nephron from the superficial part of the renal cortex: macula densa, proximal convoluted tubule, distal convoluted tubule and glomerulus. The mean activity in the macula densa region was 2.5 X 10(-18) mol/micrometers 3/min, which was about twice the mean activity of the proximal and distal tubular cells and four times that of the glomeruli. As glucose-6-phosphate dehydrogenase is located in the cytoplasm, the average cytoplasmic enzyme activity of the different tubular cells was calculated: macula densa activity was 4.0 X 10(-18) mol/micrometers 3/min whilst proximal tubular cells showed about a third, and distal tubular cells about a quarter of this activity.  相似文献   

2.
Summary A quantitative fluorimetric method is described for estimating the activity of glucose-6-phosphate dehydrogenase in isolated fractions of rabbit nephron from the superficial part of the renal cortex: macula densa, proximal convoluted tubule, distal convoluted tubule and glomerulus. The mean activity in the macula densa region was 2.5×10–18 mol/m3/min, which was about twice the mean activity of the proximal and distal tubular cells and four times that of the glomeruli. As glucose-6-phosphate dehydrogenase is located in the cytoplasm, the average cytoplasmic enzyme activity of the different tubular cells was calculated: macula densa activity was 4.0×10–18 mol/m3/min whilst proximal tubular cells showed about a third, and distal tubular cells about a quarter of this activity.  相似文献   

3.
Summary Glucose-6-phosphate dehydrogenase activity was measured quantitatively in isolated cortical fractions of the nephron in sodium-depeleted and sodium-loaded rabbits. The samples consisted of isolated fractions of macula densa, proximal convoluted tubule, distal convoluted tubule and glomerulus. In sodium-depleted rabbits enzyme activity was identical to that of normal rabbits. In sodium-loaded rabbits a significant decrease in enzyme activity was found in the macula densa and proximal convoluted tubule. However, using conventional histochemical incubation methods semiquantitative estimation of glucose-6-phosphate dehydrogenase showed a slight decrease in enzyme activity in the macula densa and distal convoluted tubule, and a slight increase in the proximal convoluted tubule during sodiumdepletion. During sodium-load a pronounced decrease in enzyme activity was seen in the macula densa and distal convoluted tubule. These results show that semiquantitative histochemical evaluation of changes in enzyme activity is less reliable than the more precise quantitative method especially when there are only slight changes in enzyme activity. Only where there were marked changes in histochemical enzyme activity might the results of quantitative and semiquantitative methods be in accord.  相似文献   

4.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

5.
In iodoacetate-treated microconidiating cultures of Neurospora crassa, mycelial yield, sucrose consumption and ethanol production are reduced. The specific activity of glyceraldehyde-3-phosphate dehydrogenase is sharply decreased while the specific activities of glucose-6-phosphate dehydrogenase and of 6-phosphogluconate dehydrogenase are stimulated. A polyphenoloxidase is induced in the microconidiating cultures.  相似文献   

6.
The glucose-6-phosphate dehydrogenase (EC 1.1.1.49) gene (zwf) of the cyanobacterium Synechococcus PCC 7942 was cloned on a 2.8 kb Hind III fragment. Sequence analysis revealed an ORF of 1572 nucleotides encoding a polypeptide of 524 amino acids which exhibited 41% identity with the glucose-6-phosphate dehydrogenase of Escherichia coli.  相似文献   

7.
Synechococcus leopoliensis was cultivated in a light/dark regime of 12:12 h. After onset of the illumination (2 h), the specific activity of nitrite reductase, glutamine synthetase and isocitric dehydrogenase increased; that of glucose-6-phosphate dehydrogenase decreased and that of nitrate reductase and NAD- (NADP) glutamate dehydrogenase remained nearly unchanged.This stimulation of the enzymes in vivo was also observed in vitro. Also, when extracts from darkened cells were incubated with thioredoxin and dithioerythriol enzyme activities increased in the same amount as obtained in vivo. In addition, glucose-6-phosphate dehydrogenase and isocitric dehydrogenase were stimulated by Mn2+ and Mg2+ in the assay mixture. Glutamine synthetase activity was enhanced only by Mg2+ while Mn2+ was inhibitory.The results are discussed with respect to the regulation of nitrogen metabolism by light.Abbreviations GS glutamine synthetase - GOGAT glutamate-oxoglutarate-aminotransferase - TR thioredoxin - DTE dithioerythritol - LD change from light to dark  相似文献   

8.
Summary A quantitative cytochemical assay for NAD+ kinase-like activity in the guinea-pig thyroid gland is described. The NADP+ produced by the activity of the kinase was used to drive the NADP+-dependent enzyme glucose-6-phosphate dehydrogenase which is endogenous to the tissue. The activity of glucose-6-phosphate dehydrogenase is greatly in excess of that of the kinase and was unaffected by the constituents of the kinase incubation medium (ATP, Mg2+ and NAD+) either alone or in combination. Kinase activity was dependent both on ATP and Mg2+, with maximal activity seen when the Mg-ATP ratio was between 1:1 and 4:1. Free ATP inhibited the activity of the enzyme. Enzyme activity was exhibited over a broad pH range (7–9) with a peak at pH 8.2. The sulphhydryl-blocking agents,p-chloromercuribenzoate, iodoacetate and iodoacetamide (at 1 mM), completely abolished kinase activity but were without effect on glucose-6-phosphate dehydrogenase activity.N-ethylmaleimide and citrate (both at 1 mM) had no effect on either kinase or glucose-6-phosphate dehydrogenase activities.  相似文献   

9.
The functional coupling of 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase was investigated in rat liver microsomal vesicles. The activity of both enzymes was latent in intact vesicles, indicating the intraluminal localization of their active sites. Glucose-6-phosphate, a substrate for hexose-6-phosphate dehydrogenase, stimulated the cortisone reductase activity of 11beta-hydroxysteroid dehydrogenase type 1. Inhibition of glucose-6-phosphate uptake by S3483, a specific inhibitor of the microsomal glucose-6-phosphate transporter, decreased this effect. Similarly, cortisone increased the intravesicular accumulation of radioactivity upon the addition of radiolabeled glucose-6-phosphate, indicating the stimulation of hexose-6-phosphate dehydrogenase activity. A correlation was shown between glucose-6-phosphate-dependent cortisone reduction and cortisone-dependent glucose-6-phosphate oxidation. The results demonstrate a close cooperation of the enzymes based on co-localization and the mutual generation of cofactors for each other.  相似文献   

10.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

11.
Previous results from this laboratory have shown that very low chronic doses of gamma radiation can stimulate proliferation of the Cyanobacterium Synechococcus lividus. This modification of cell proliferation occurred during the first doubling. In this paper, we have compared the metabolism of cells cultivated in a normal environment or under chronic irradiation. Incubation of the cells in a new medium induced a high superoxide dismutase (EC 1.15.1.1, SOD) activity at the 18th hour and a degradation of phycocyanin, thus demonstrating that cells were submitted to a photooxidative stress. This increase in superoxide dismutase activity was followed by concomittant peaks of glutathione reductase (EC 1.6.4.2, GR) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49, G6P-DH) at the 24th hour. Irradiated cultures at a dose of 53.5 mGray/year show an earlier and higher peak of SOD, GR, and G6P-DH. In a second stage, cultures showed an earlier onset of photosynthesis under irradiation, as evidenced by an increase in pigment content and an enhancement of glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13, GAP-DH). These results show that the radiostimulation is related to the activation of enzymes protecting against peroxides that were induced under oxidative circumstances and to the activation of a glucose catabolism via the oxidative pentose phosphate pathway.Abbreviations mGy milli-Gray - SOD superoxide dismutase - G6P-DH glucose-6-phosphate dehydrogenase - GAP-DH glycer-aldehyde-3-phosphate dehydrogenase - GSSG oxidized glutathione  相似文献   

12.
The Aspergillus niger strain ZBY-7 was selected as the original strain of glucose-6-phosphate dehydrogenase production. After mutagenesis of the strain by means of UV irradiation and nitrosoguanidine, mutants of Aspergillus niger resistant to a certain metabolic inhibitor were obtained. Five of the mutants showed increased glucose-6-phosphate dehydrogenase production. The mutant resistant to antimycin A (Aspergillus niger AM-23) produced the highest level of glucose-6-phosphate dehydrogenase (695.9% of that produced by the original strain).  相似文献   

13.
Glucose-6-phosphate dehydrogenase activity has been localized ultrastructurally in fixed tissues. Activity was found in particular in association with ribosomes of granular endoplasmatic reticulum. Biochemical studies indicated that glucose-6-phosphate dehydrogenase activity is also present in the cytoplasm and in peroxisomes. Fixation may be held responsible for selective inactivation of part of glucose-6-phosphate dehydrogenase activity. In the present study, we applied the ferricyanide method for the demonstration of glucose-6-phosphate dehydrogenase activity in unfixed cryostat sections of rat liver in combination with the semipermeable membrane technique and in isolated rat liver parenchymal cells. Isolated liver parenchymal cells were permeabilized with 0.025% glutaraldehyde after NADP+ protection of the active site of glucose-6-phosphate dehydrogenase. This treatment resulted in only slight inactivation of glucose-6-phosphate dehydrogenase activity. The composition of the incubation medium was optimized on the basis of rapid light microscopical analysis of the formation of reddish-brown final reaction product in sections. With the optimized method, electron dense reaction product was observed in cryostat sections on granular endoplasmic reticulum, in mitochondria and at the cell border. However, the ultrastructural morphology was rather poor. In contrast, the morphology of incubated isolated cells was preserved much better. Electron dense precipitate was found on ribosomes of the granular endoplasmic reticulum, in peroxisomes and the cytoplasm, particularly at the periphery of cells. In conclusion, our ultrastructural study clearly demonstrates that it is essential to use mildly-fixed cells to allow detection of glucose-6-phosphate dehydrogenase activity in all cellular compartments where activity is present.  相似文献   

14.
Summary In submerged cultures of Claviceps sp. CP II, elymoclavine was synthesized only by the growing mycelium (phase P1), whereas cultures of C. purpurea strain 129 produced agroclavine after vegetative growth had also ceased (phase P2). In strain CP II, the peak of activity of malate dehydrogenase, glucose-6-phosphate dehydrogenase and phosphatases was related to the time of maximum growth rate and alkaloid production. Citrate synthase activity paralleled the course of alkaloid synthesis. Strain 129 exhibited a further activity peak of the same magnitude during phase P2. ATP levels in both cultures corresponded to the pattern of change in enzyme activities. Strain CP II contained roughly twice as much orthophosphate and ATP in its cells as strain 129 and exhibited higher average activity of glucose-6-phosphate dehydrogenase. It follows from these results that alkaloid synthesis requires the processes of primary metabolism, even when it occurs after active growth of the culture has ceased. Cultures producing alkaloids oxidized at C-8 exhibit higher glucose-6-phosphate dehydrogenase activity, probably because of a higher NADPH consumption.  相似文献   

15.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

16.
Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate: NADP+ l-oxidoreductase EC 1.1.1.49) isolated from Paracoccus denitrificans grown on glucose/nitrate exhibits both NAD+-and NADP+-linked activities. Both activities have a pH optimum of pH 9.6 (Glycine/NaOH buffer) and neither demonstrates a Mg2+ requirement. Kinetics for both NAD(P)+ and glucose-6-phosphate were investigated. Phosphoenolpyruvate inhibits both activities in a competitive manner with respect to glucose-6-phosphate. ATP inhibits the NAD+-linked activity competitively with respect to glucose-6-phosphate but has no effect on the NADP+-linked activity. Neither of the two activities are inhibited by 100 M NADH but both are inhibited by NADPH. The NAD+-linked activity is far more sensitive to inhibition by NADPH than the NADP+-linked activity.  相似文献   

17.
Phosphoenolpyruvate (PEP) carboxylase activity in epidermal extracts of Commelina communis has been compared in the presence of malate and glucose-6-phosphate. The activity of PEP carboxylase was inhibited by increasing malate concentrations at several substrate (PEP) concentrations and changes in both the apparent K m (PEP) and V max values in the presence of malate suggested the occurence of mixed-type inhibiton. In the presence of glucose-6-phosphate no increase in enzyme activity was observed, although there was a slight decrease in the K m (PEP). However, glucose-6-phosphate appeared to alleviate the inhibition caused by malate. The possible implications of these properties in the control of malate production in guard cells is discussed.Abbreviations PEP phosphoenolpyruvate - Glc6P glucose-6-phosphate  相似文献   

18.
Summary The localisation of alkaline-, adenosine tri-, glucose-6- and acid phosphatase was studied in the juxtaglomerular complexes of rat, mouse and human kidneys. An alkaline-and adenosine triphosphatase active region was observed between the macula densa, Goormaghtigh cell group and in the interstitium of the latter. The adenosine triphosphatase activity extended into the lateral cell membranes of the macular cells and in properly incubated sections it did not appear among other distal tubular cells. The granular juxtaglomerular cells were ATP-ase negative. The cells of the human macula densa and the granular juxtaglomerular cells of the rat and mouse showed acid phosphatase activity. The glucose-6-phosphatase reaction, accomplished at acid and alkaline pH, was negative in the JG complex of all three species. The possible role of these enzymes in the function of the JG complex also has been discussed.  相似文献   

19.
The quantity of translatable mRNA of glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) in primary cultures of adult rat hepatocytes subjected to different hormonal conditions was determined with a reticulocyte-lysate, cell-free system. The level of glucose-6-phosphate dehydrogenase mRNA was about 5-fold higher in the presence of insulin than in its absence. This increase of glucose-6-phosphate dehydrogenase mRNA reached a maximum 12 h after the addition of insulin. The maximum level of induction of glucose-6-phosphate dehydrogenase mRNA required 10(-8) M insulin. Glucagon and triiodothyronine had no effect on the glucose-6-phosphate dehydrogenase mRNA level. The increase of glucose-6-phosphate dehydrogenase activity correlated with the increase in level of mRNA of this enzyme. This suggests that the changes in glucose-6-phosphate dehydrogenase activity in response to the above hormonal changes are primarily due to changes in the amount of mRNA coding for this enzyme.  相似文献   

20.
Acquisition of the dark heterotrophic growth capacity on glucose in Plectonema boryanum involves both adaptation and enrichment of a fast-growing genotype. The adaptation includes induction of functions involved in glucose incorporation and increase in glucose-6-phosphate dehydrogenase activity. Photosynthetic products are implicated in the control of both systems. Efficient energy conversion in the dark, as measured by cyanophage multiplication, correlates in time with the increase in potential for glucose incorporation while heterotrophic growth capacity correlates with the increase in glucose-6-phosphate dehydrogenase activity. The lower efficiency of heterotrophic growth compared to photoautotrophic growth is discussed in light of the conservation of the photosynthetic potency in the heterotrophic cells.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - G6P glucose-6-phosphate - NADP nicotinamide adenine dinucleotide phosphate - NTG N-methyl-N-nitro-N-nitrosoguanidine - RUDP ribulose-1,5-diphosphate - TCA trichloroacetic acid Dedicated to Prof. R. Y. Stanier on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号