首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diphenyl-1-pyrenylphosphine (DPPP), which reacts with lipid hydroperoxides stoichiometrically to yield fluorescent product DPPP oxide, was used as a fluorescent probe for lipid peroxidation in live cells. DPPP was successfully incorporated into U937 cells. Incorporation of DPPP into the cell membrane was confirmed by fluorescence microscopy. Reaction of DPPP with hydroperoxides was examined by monitoring increase in fluorescence intensity of the cell. It was found that lipid-soluble hydroperoxides such as methyl linoleate hydroperoxide preferably react with DPPP, whereas hydrogen peroxide did not react with DPPP located in the membrane. Linear correlation between increase in fluorescence intensity and the amount of methyl linoleate hydroperoxide applied to the cell was observed. DPPP gave little effect on cell proliferation, cell viability or cell morphology for at least 3 d. DPPP oxide, fluorescent product of DPPP, was quite stable in the membrane of living cells for at least 2 d. Fluorescence of DPPP-labeled cells was measured after treating with diethylmaleate (DEM), or 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH), or culturing with low serum content. These reagents and culture condition induced dose- and/or time-dependent increase in fluorescence. Addition of vitamin E effectively suppressed increase in fluorescence. When DPPP-labeled cells and DCFH-DA-labeled cells were treated with NO, H(2)O(2), AAPH, and DEM to compare the formation of hydoperoxides in the membrane and cytosol, distinct patterns of peroxide formation were observed. These results indicate that fluorescent probe DPPP is eligible for estimation of lipid peroxidation proceeding in the membrane of live cells, and use of this probe is especially advantageous in long-term peroxidation of the cell.  相似文献   

2.
Previous studies have shown endothelial cell membrane depolarization and generation of reactive oxygen species (ROS) in endothelial cells with abrupt reduction in shear stress (ischemia). This study evaluated the role of ATP-sensitive potassium (K(ATP)) channels and NADPH oxidase in the ischemic response by using Kir6.2-/- and gp91(phox)-/- mice. To evaluate ROS generation, we subjected isolated perfused mouse lungs labeled with 2',7'-dichlorodihydrofluorescein (DCF), hydroethidine (HE), or diphenyl-1-pyrenylphosphine (DPPP) to control perfusion followed by global ischemia. In wild-type C57BL/6J mice, imaging of subpleural endothelial cells showed a time-dependent increase in intensity for all three fluorescence probes with ischemia, which was blocked by preperfusion with cromakalim (a K(ATP) channel agonist) or diphenyleneiodonium (DPI, a flavoprotein inhibitor). Endothelial cell fluorescence with bis-oxonol, a membrane potential probe, increased during lung ischemia indicating cell membrane depolarization. The change in membrane potential with ischemia in lungs of gp91(phox)-/- mice was similar to wild type, but ROS generation did not occur. Lungs from Kir6.2-/- showed marked attenuation of the change in both membrane potential and ROS production. Thus membrane depolarization during lung ischemia requires the presence of a K(ATP) channel and is required for activation of NADPH oxidase and endothelial ROS generation.  相似文献   

3.
Diphenyl-1-pyrenylphosphine (DPPP), which reacts with lipid hydroperoxide stoichiometrically to yield a fluorescent product DPPP oxide (DPPP=O) and the corresponding hydroxide, was used as a fluorescent probe for lipid peroxidation in low-density lipoprotein (LDL). DPPP was successfully incorporated into LDL using the dispersion reagent Pluronic F-127. Incorporation of DPPP into LDL was confirmed by gel filtration chromatography. Reaction of DPPP with hydroperoxide within an LDL particle was examined by monitoring the increase in fluorescence intensity of the LDL. It was found that lipid-soluble hydroperoxides such as methyl linoleate hydroperoxide preferably reacted with DPPP, whereas hydrogen peroxide did not. Fluorescence was increased at the early stages in the oxidation of DPPP-labeled LDL by an azo radical initiator or human neutrophils. LDL, which was labeled with DPPP or DPPP=O, was taken up by cells such as THP-1-derived macrophages and human umbilical vein endothelial cells. The fluorescence of DPPP=O could be observed in cells using fluorescence microscopy equipped with a cooled charge coupled device camera in a nondestructive manner. The present study shows that DPPP is a sensitive, selective, and quantitative probe for monitoring LDL oxidation and visualizing intracellular oxidation.  相似文献   

4.
Loss of fluid shear stress (ischemia) to the lung endothelium causes endothelial plasma membrane depolarization via ATP-sensitive K(+) (K(ATP)) channel closure, initiating a signaling cascade that leads to NADPH oxidase (NOX2) activation and ROS production. Since wortmannin treatment significantly reduces ROS production with ischemia, we investigated the role of phosphoinositide 3-kinase (PI3K) in shear-associated signaling. Pulmonary microvascular endothelial cells in perfused lungs subjected to abrupt stop of flow showed membrane depolarization and ROS generation. Stop of flow in flow-adapted mouse pulmonary microvascular endothelial cells in vitro resulted in the activation of PI3K and Akt as well as ROS generation. ROS generation in the lungs in situ was almost abolished by the PI3K inhibitor wortmannin and the PKC inhibitor H7. The combination of the two (wortmannin and H7) did not have a greater effect. Activation of NOX2 was greatly diminished by wortmannin, knockout of Akt1, or dominant negative PI3K, whereas membrane depolarization was unaffected. Ischemia-induced Akt activation (phosphorylation) was not observed with K(ATP) channel-null cells, which showed minimal changes in membrane potential with ischemia. Activation of Akt was similar to wild-type cells in NOX2-null cells, which do not generate ROS with ischemia. Cromakalim, a K(ATP) channel agonist, prevented both membrane depolarization and Akt phosphorylation with ischemia. Thus, Akt1 phosphorylation follows cell membrane depolarization and precedes the activation of NOX2. These results indicate that PI3K/Akt and PKC serve as mediators between endothelial cell membrane depolarization and NOX2 assembly.  相似文献   

5.
We used the isolated-perfused rat lung model to study the influence of pulmonary ventilation and surfactant instillation on the development of postreperfusion lung microvascular injury. We hypothesized that the state of lung inflation during ischemia contributes to the development of the injury during reperfusion. Pulmonary microvascular injury was assessed by continuously monitoring the wet lung weight and measuring the vessel wall (125)I-labeled albumin ((125)I-albumin) permeability-surface area product (PS). Sprague-Dawley rats (n = 24) were divided into one control group and five experimental groups (n = 4 rats per group). Control lungs were continuously ventilated with 20% O(2) and perfused for 120 min. All lung preparations were ventilated with 20% O(2) before the ischemia period and during the reperfusion period. The various groups differed only in the ventilatory gas mixtures used during the flow cessation: group I, ventilated with 20% O(2); group II, ventilated with 100% N(2); group III, lungs remained collapsed and unventilated; group IV, same as group III but pretreated with surfactant (4 ml/kg) instilled into the airway; and group V, same as group III but saline (4 ml/kg) was instilled into the airway. Control lungs remained isogravimetric with baseline (125)I-albumin PS value of 4.9 +/- 0.3 x 10(-3) ml x min(-1) x g wet lung wt(-1). Lung wet weight in group III increased by 1.45 +/- 0.35 g and albumin PS increased to 17.7 +/- 2.3 x 10(-3), indicating development of vascular injury during the reperfusion period. Lung wet weight and albumin PS did not increase in groups I and II, indicating that ventilation by either 20% O(2) or 100% N(2) prevented vascular injury. Pretreatment of collapsed lungs with surfactant before cessation of flow also prevented the vascular injury, whereas pretreatment with saline vehicle had no effect. These results indicate that the state of lung inflation during ischemia (irrespective of gas mixture used) and supplementation of surfactant prevent reperfusion-induced lung microvascular injury.  相似文献   

6.
Abrupt cessation of lung perfusion induces a rapid endothelial response that is not associated with anoxia but reflects loss of normal shear stress. This response includes membrane depolarization, H(2)O(2) generation, and increased intracellular Ca(2+). We evaluated these parameters immediately upon nonhypoxic ischemia using fluorescence videomicroscopy to image in situ endothelial cells in isolated, ventilated rat lungs. Lungs labeled with 4-(2-[6-(dioctylamino)-2-naphthalenyl]ethenyl)1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS; a membrane potential probe), Amplex Red (an extracellular H(2)O(2) probe), or fluo 3-AM (a Ca(2+) indicator) were subjected to control perfusion followed by global ischemia. Endothelial di-8-ANEPPS fluorescence increased significantly within the first second of ischemia and stabilized at 15 s, indicating membrane depolarization by approximately 17 mV; depolarization was blocked by preperfusion with the K(+) channel agonist lemakalim. Increased H(2)O(2), inhibitable by catalase, was detected in the vascular space at 1-2 s after the onset of ischemia. Increased intracellular Ca(2+) was detected 10-15 s after the onset of ischemia; the initial increase was inhibited by preperfusion with thapsigargin. Thus the temporal sequence of the initial response of endothelial cells in situ to loss of shear stress (i.e., ischemia) is as follows: membrane depolarization, H(2)O(2) release, and increased intracellular Ca(2+).  相似文献   

7.
Vasoconstrictors cause contraction of pulmonary microvascular endothelial cells in culture. We wondered if this meant that contraction of these cells in situ caused active control of microvascular perfusion. If true, it would mean that pulmonary microvessels were not simply passive tubes and that control of pulmonary microvascular perfusion was not mainly due to the contraction and dilation of arterioles. To test this idea, we vasoconstricted isolated perfused rat lungs with angiotensin II, bradykinin, serotonin, or U46619 (a thromboxane analog) at concentrations that produced equal flows. We also perfused matched-flow controls. We then infused a bolus of 3 μm diameter particles into each lung and measured the rate of appearance of the particles in the venous effluent. We also measured microscopic trapping patterns of particles retained within each lung. Thirty seconds after particle infusion, venous particle concentrations were significantly lower (P ≤ 0.05) for lungs perfused with angiotensin II or bradykinin than for those perfused with U46619, but not significantly different from serotonin perfused lungs or matched flow controls. Microscopic clustering of particles retained within the lungs was significantly greater (P ≤ 0.05) for lungs perfused with angiotensin II, bradykinin, or serotonin, than for lungs perfused with U46619 or for matched flow controls. Our results suggest that these agents did not produce vasoconstriction by a common mechanism and support the idea that pulmonary microvessels possess a level of active control and are not simply passive exchange vessels.  相似文献   

8.
Phospholipids are a major structural component of all cell membranes; their peroxidation represents a severe threat to cellular integrity and their repair is important to prevent cell death. Peroxiredoxin 6 (Prdx6), a protein with both GSH peroxidase and phospholipase A2 (PLA2) activity, plays a critical role in antioxidant defense of the lung and other organs. We investigated the role of Prdx6 in the repair of peroxidized cell membranes in pulmonary microvascular endothelial cells (PMVEC) and isolated mouse lungs treated with tert-butyl hydroperoxide and lungs from mice exposed to hyperoxia (100% O2). Lipid peroxidation was evaluated by measurement of thiobarbituric acid reactive substances, oxidation of diphenyl-1-pyrenylphosphine, or ferrous xylenol orange assay. The exposure dose was varied to give a similar degree of lipid peroxidation at the end of exposure in the different models. Values for lipid peroxidation returned to control levels within 2 h after oxidant removal in wild-type PMVEC and perfused lungs but were unchanged in Pxdx6 null preparations. An intermediate degree of repair was observed with PMVEC and lungs that expressed only C47S or D140A mutant Prdx6; the former mutant does not have peroxidase activity, while the latter loses its PLA2 activity. Prdx6 null mice showed markedly delayed recovery from lipid peroxidation during 20 h observation following exposure to hyperoxia. Thus, Prdx6 plays a critical role in the repair of peroxidized phospholipids in cell membranes and the recovery of lung cells from peroxidative stress; the peroxidase and PLA2 activity each contribute to the recovery process.  相似文献   

9.
Ischemia in the intact ventilated lung (oxygenated ischemia) leads to endothelial generation of reactive oxygen species (ROS) and nitric oxide (NO). This study investigated the signaling pathway for NO generation with oxygenated ischemia in bovine pulmonary artery endothelial cells (BPAEC) that were flow adapted in vitro. BPAECs were cultured in an artificial capillary system and subjected to abrupt cessation of flow (ischemia) under conditions where cellular oxygenation was maintained. Immunoblotting and dichlorofluorescein/triazolofluorescein fluorescence were used to assess extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation and ROS/NO generation, respectively. ERK1/2 phosphorylation significantly increased during ischemia, whereas total ERK1/2 did not change. ERK1/2 phosphorylation was suppressed by an inhibitor of tyrosine phosphorylation (genestein), cholesterol-binding reagents (filipin or cyclodextrin), or inhibitors of ROS (diphenyleneiodonium, N-acetylcysteine, or catalase), suggesting a role for both membrane cholesterol and ROS in ERK1/2 activation. Ischemia resulted in a 1.8-fold increase in NO generation that was suppressed by inhibitors of ERK1/2 activation (PD-98059 or U-0126). A calmodulin inhibitor (calmidizolium) or removal of Ca2+ from the medium also blocked NO generation, indicating that endothelial NO synthase (eNOS) is the activated isoform. These results indicate ischemia induces NO generation (possibly through a membrane cholesterol-sensitive flow sensor), the ERK1/2 cascade mediates signaling from the sensor to eNOS, and ROS are required for ERK activation.  相似文献   

10.
Endothelial cells generate nitric oxide (NO) in response to agonist stimulation or increased shear stress. In this study, we evaluated the effects of abrupt cessation of shear stress on pulmonary endothelial NO generation and its relationship to changes in intracellular Ca(2+). In situ endothelial generation of NO and changes in intracellular Ca(2+) in isolated, intact rat lungs were evaluated using fluorescence microscopy with diaminofluorescein diacetate, an NO probe, and Fluo-3, a Ca(2+) probe. The onset of increased NO generation in endothelial cells of subpleural microvessels in situ occurred between 30 and 90 s after onset of ischemia and was preceded by an increase in intracellular Ca(2+) due to both influx of extracellular Ca(2+) and release from intracellular stores. Flow cessation-induced NO generation in endothelial cells in situ was Ca(2+)-, calmodulin-, and PI3-kinase-dependent. The similarity of endothelial cell response (increased NO generation) to either increased flow or cessation of flow suggests that cells respond to an imposed alteration from a state of adaptation. This response to flow cessation may constitute a compensatory vasodilatatory mechanism and may play a role in signaling for cell proliferation and vascular remodeling.  相似文献   

11.
We evaluated the changes in plasma membrane composition, biophysical properties, and morphology of pulmonary endothelial cells in anesthetized rabbits receiving 0.5 ml. kg(-1). min(-1) saline infusion for 180 min, causing mild interstitial edema. Plasma membrane fractions were obtained from lung homogenates with gradient centrifugation, allowing a sixfold enrichment in caveolin-1. In edematous lungs, cholesterol content and phospholipidic phosphorus increased by 15 and 40%, respectively. These data correlated with morphometric analysis of lungs fixed in situ by vascular perfusion with 2.5% glutaraldehyde, suggesting a relative increase in surface of luminal to interstitial front of the capillary endothelial cells, due to a convoluted luminal profile. In edematous lungs, the fraction of double-bound fatty acids increased in membrane lipids; moreover, the phosphatidylcholine/phosphatidylethanolamine and the cholesterol/phospholipid ratios decreased. These changes were consistent with the increase in fluorescence anisotropy of plasma membrane, indicating an increase in its fluidity. Data suggest that mechanical stimuli elicited by a modest (approximately 4%) increase in extravascular water cause marked changes in plasma membranes that may be of relevance in signal transduction and endothelial cell activation.  相似文献   

12.
Dietary flaxseed (FS) is a nutritional whole grain with high contents of omega-3 fatty acids and lignans with anti-inflammatory and antioxidant properties. We evaluated FS in a murine model of pulmonary ischemia-reperfusion injury (IRI) by dietary supplementation of 0% (control) or 10% (treatment) FS before IRI. Mice fed 0% FS undergoing IRI had a significant decrease in arterial oxygenation (Pa(O(2))) and a significant increase in bronchoalveolar lavage (BAL) protein compared with sham-operated mice. However, mice fed 10% FS undergoing IRI had a significant improvement in both Pa(O(2)) and BAL protein compared with mice fed 0% FS undergoing IRI. In addition, oxidative lung damage was decreased in 10% FS-supplemented mice undergoing IRI, as assessed by malondialdehyde levels. Immunohistochemical staining of lungs for iPF(2alpha)-III F(2) isoprostane, a measure of lipid oxidation, was diminished. FS-supplemented mice had less reactive oxygen species (ROS) release from the vascular endothelium in lungs in an ex vivo model of IRI, and alveolar macrophages isolated from FS-fed mice had significantly reduced ROS generation in response to oxidative burst. Pulmonary microvascular endothelial cells produced less ROS in a flow cessation model of ischemia when preincubated with purified FS lignan metabolites. Pharmacological inhibition of heme oxygenase-1 (HO-1) resulted in only a partial reduction of FS protection in the same model. We conclude that dietary FS is protective against IRI in an experimental murine model and that FS affects ROS generation and ROS detoxification via pathways not limited to upregulation of antioxidant enzymes such as HO-1.  相似文献   

13.
Oxygen-dependent reperfusion injury in the isolated rat lung.   总被引:3,自引:0,他引:3  
To further define the relationship between oxygen dependence of lung injury during ischemia and ischemia-reperfusion, we used the isolated, perfused, and ventilated rat lung model, so that oxygenation and perfusion could be separated. During ischemia, lungs were ventilated with various oxygen concentrations and then ventilated with 95% oxygen during the 60-min reperfusion period. Other lungs were ventilated with 0% oxygen (nitrogen) during ischemia, and the reperfusion phase oxygen concentration was varied. Tissue and perfusate lipid peroxidation products (thiobarbituric acid-reactive substances and conjugated dienes), dry-to-wet weight ratio, and lactate dehydrogenase were measured as indexes of lung damage. In addition, electron microscopy of some lungs was performed. Results demonstrate an oxygen dependence of lipid peroxidation in both the ischemic and reperfusion phases, but lipid peroxidation is severalfold greater in the reperfusion than in the ischemic phase. Products of lipid peroxidation closely correlate with indexes of lung injury (dry-to-wet weight ratio, lactate dehydrogenase, and electron microscopy).  相似文献   

14.
Intestinal ischemia/reperfusion (I/R) is a critical and triggering event in the development of distal organ dysfunction, frequently involving the lungs. Respiratory failure is a common cause of death and complications after intestinal I/R. In this study we investigated the effects of edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) on the prevention of lung injury induced by intestinal I/R in rats. Edaravone has been used for protection against I/R injury in patients with cerebral infarction. When rats were subjected to 180 min of intestinal ischemia, a high incidence of mortality was observed within 24 h. In this situation, intravenous administration of edaravone just before the start of reperfusion reduced the mortality in a dose-dependent manner. To examine the efficacy of edaravone on the lung injury induced by intestinal I/R in more detail, we performed 120 min of intestinal ischemia followed by 120 min of reperfusion. Edaravone treatment decreased the neutrophil infiltration, the lipid membrane peroxidation, and the expression of proinflammatory cytokine interleukin-6 mRNA in the lungs after intestinal I/R compared to the I/R-treated rat lungs without edaravone treatment. Histopathological analysis also indicated the effectiveness of edaravone. In conclusion, edaravone ameliorated the lung injury induced by intestinal I/R, resulting in a reduction in mortality.  相似文献   

15.
We caused unilateral lung ischemia-reperfusion injury in awake sheep by simultaneously occluding the left pulmonary artery and left main stem bronchus for 12 h. The occluded left lung was inflated with nitrogen. Reperfusion resulted in an elevation of lung lymph flow from 1.3 to 5.0 ml/15 min and an increase in lymph-to-plsma protein concentration ratios. Reperfusion, but not ischemia alone, caused an increase in wet-to-dry weight ratios in both the reperfused left lung and the contralateral right lung. Granulocytes increased in both lungs during the ischemic period and after reperfusion, and hypoxemia developed after reperfusion. The calcium channel antagonist, verapamil, given just before reperfusion, caused a marked attenuation in the reperfusion-induced changes in the lung lymph variables and wet-to-dry weight ratio. However, verapamil did not affect the hypoxemia or granulocyte sequestration seen after reperfusion. We conclude that reperfusion of ischemic sheep lung results in increased microvascular permeability that can be partially prevented by verapamil.  相似文献   

16.
Abrupt cessation of flow representing the acute loss of shear stress (simulated ischemia) to flow-adapted pulmonary microvascular endothelial cells (PMVEC) leads to reactive oxygen species (ROS) generation that signals for EC proliferation. We evaluated the role of caveolin-1 on this cellular response with mouse PMVEC that were preconditioned for 72 h to laminar flow at 5 dyn/cm(2) followed by stop of flow ("ischemia"). Preconditioning resulted in a 2.7-fold increase in cellular expression of K(ATP) (K(IR) 6.2) channels but no change in expression level of caveolin-1, gp91(phox), or MAP kinases. The initial response to ischemia in wild type cells was cell membrane depolarization that was abolished by gene targeting of K(IR) 6.2. The subsequent response was increased ROS production associated with activation of NADPH oxidase (NOX2) and then phosphorylation of MAP kinases (Erk, JNK). After 24 h of ischemia in wild type cells, the cell proliferation index increased 2.5 fold and the % of cells in S+G(2)/M phases increased 6-fold. This signaling cascade (cell membrane depolarization, ROS production, MAP kinase activation and cell proliferation) was abrogated in caveolin-1 null PMVEC or by treatment of wild type cells with filipin. These studies indicate that caveolin-1 functions as a shear sensor in flow-adapted EC resulting in ROS-mediated cell signaling and endothelial cell proliferation following the abrupt reduction in flow.  相似文献   

17.
Shear stress modulates endothelial physiology, yet the effect(s) of flow cessation is poorly understood. The initial metabolic responses of flow-adapted bovine pulmonary artery endothelial cells to the abrupt cessation of flow (simulated ischemia) was evaluated using a perfusion chamber designed for continuous spectroscopy. Plasma membrane potential, production of reactive O2 species (ROS), and intracellular Ca(2+) and nitric oxide (NO) levels were measured with fluorescent probes. Within 15 s after flow cessation, flow-adapted cells, but not cells cultured under static conditions, showed plasma membrane depolarization and an oxidative burst with generation of ROS that was inhibited by diphenyleneiodonium. EGTA-inhibitable elevation of intracellular Ca(2+) and NO were observed at approximately 30 and 60 s after flow cessation, respectively. NO generation was decreased in the presence of inhibitors of NO synthase and calmodulin. Thus flow-adapted endothelial cells sense the altered hemodynamics associated with flow cessation and respond by plasma membrane depolarization, activation of NADPH oxidase, Ca(2+) influx, and activation of Ca(2+)/calmodulin-dependent NO synthase. This signaling response is unrelated to cellular anoxia.  相似文献   

18.
The effect of ischemia on the properties of 5-hydroxytryptamine1A + B (5-HT1A+B) and 5-hydroxytryptamine1B (5-HT1B) binding sites, physical-state "fluidity" of the membrane, and its susceptibility to peroxidation in vitro was investigated in the cerebral cortex of gerbils. Ischemia was induced by bilateral carotid artery occlusion for 15 min alone or with release for 1 h. Ischemia both with and without reflow decreased the number of 5-HT1A + B and 5-HT1B binding sites, whereas ischemia and reflow altered the affinity for 5-HT1B binding sites. Resistance to the temperature-dependent increase in "fluidity" of the membrane was detected (by fluorescence anisotropy using 1,6-diphenyl-1,3,5-hexatriene as a probe) after ischemia and reflow but not in ischemia alone. Susceptibility of the membranes to Fe2+- and ascorbic acid-stimulated lipid peroxidation in vitro was decreased following ischemia and recirculation only. These findings strongly suggest that the composition and the function of the membrane are markedly disturbed during recirculation after ischemia.  相似文献   

19.
We studied the synergistic interaction between platelet-activating factor (PAF) and protamine sulfate, a cationic protein that causes pulmonary endothelial injury, in isolated rat lungs perfused with a physiological salt solution. A low dose of protamine (50 micrograms/ml) increased pulmonary artery perfusion pressure (Ppa) but did not increase wet lung-to-body weight ratio after 20 min. Pretreatment of the lungs with a noninjurious dose of PAF (1.6 nM) 10 min before protamine markedly potentiated protamine-induced pulmonary vasoconstriction and resulted in severe lung edema and increased lung tissue content of 6-keto-prostaglandin F1 alpha, thromboxane B2, and leukotriene C4. Pulmonary microvascular pressure (Pmv), measured by double occlusion, was markedly increased in lungs given PAF and protamine. These potentiating effects of PAF were blocked by WEB 2086 (10(-5) M), a specific PAF receptor antagonist. Pretreatment of the lungs with a high dose of histamine (10(-4) M) failed to enhance the effect of protamine on Ppa, Pmv, or wet lung-to-body weight ratio. Furthermore, PAF pretreatment enhanced elastase-, but not H2O2-, induced lung edema. To assess the role of hydrostatic pressure in edema formation, we compared lung permeability-surface area products (PS) in papaverine-treated lungs given either protamine alone or PAF + protamine and tested the effect of mechanical elevation of Pmv on protamine-induced lung edema. In the absence of vasoconstriction, PAF did not potentiate protamine-induced increase in lung PS. On the other hand, mechanically raising Pmv in protamine-treated lungs to a level similar to that measured in lungs given PAF + protamine did not result in a comparable degree of lung edema. We conclude that PAF potentiates protamine-induced lung edema predominantly by enhanced pulmonary venoconstriction. However, a pressure-independent effect of PAF on lung vasculature cannot be entirely excluded.  相似文献   

20.
The underlying mechanisms of lung endothelial injury after intestinal ischemia-reperfusion (I/R) injury are not fully known. Here we investigated the effects of posttreatment with a neutrophil elastase inhibitor (NEI; ONO-5046) on lung injury after intestinal I/R injury in a rat model. Intestinal I/R was produced by 90 min of ischemia followed by either 60 or 240 min of reperfusion. For all experimental groups, the endothelial permeability index increased, neutrophil H(2)O(2) production increased in the pulmonary vasculature blood, neutrophil counts increased in bronchoalveolar lavage fluid (BALF), and the cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-3 levels were increased in BALF after 240 min (P < 0.01). In rats treated with NEI from 60 min after reperfusion, the lung endothelial permeability index was significantly reduced (P < 0.05), whereas neutrophil H(2)O(2) production in pulmonary vasculature blood and neutrophil count in BALF were significantly suppressed by NEI (P < 0.05 and P < 0.01, respectively). In addition, NEI significantly suppressed the increase of CINC-1 and CINC-3 levels in BALF (P < 0.05). Our study clearly indicates that posttreatment with NEI reduces neutrophil activation in the pulmonary vessels and neutrophil accumulation in the lungs and suggests that ONO-5046, even when administered after the primary intestinal insult, can prevent the progression of lung injury associated with intestinal I/R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号