首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
DNA is one of the most basic and essential genetic materials in the field of molecular biology.To date,isolation of sufficient and good-quality DNA is still a challenge for many plant species,though various DNA extraction methods have been published.In the present paper,a recycling DNA extraction method was proposed.The key step of this method was that a single plant tissue sample was recycled for DNA extraction for up to four times,and correspondingly four DNA precipitations(termed as the 1st,2nd,3rd and 4th DNA sample, respectively) were conducted.This recycling step was integrated into the conventional CTAB DNA extraction method to establish a recycling CTAB method.This modified CTAB method was tested in eight plant species,wheat,sorghum,barley,corn,rice,Brachypodium distachyon,Miscanthus sinensis and tung tree.The results showed that high-yield and good-quality DNA samples could be obtained by using this new method in all the eight plant species.The DNA samples were good templates for PCR amplification of both ISSR and SSR markers.The recycling method can be used in multiple plant species and can be integrated with multiple conventional DNA isolation methods,and thus is an effective and universal DNA isolation method.  相似文献   

2.
Traditional Chinese medicine(TCM) preparations are widely used for healthcare and clinical practice. So far, the methods commonly used for quality evaluation of TCM preparations mainly focused on chemical ingredients. The biological ingredient analysis of TCM preparations is also important because TCM preparations usually contain both plant and animal ingredients,which often include some mis-identified herbal materials, adulterants or even some biological contaminants.For biological ingredient analysis, the efficiency of DNA extraction is an important factor which might affect the accuracy and reliability of identification. The component complexity in TCM preparations is high, and DNA might be destroyed or degraded in different degrees after a series of processing procedures. Therefore, it is necessary to establish an effective protocol for DNA extraction from TCM preparations. In this study, we chose a classical TCM preparation,Liuwei Dihuang Wan(LDW), as an example to develop a TCM-specific DNA extraction method.An optimized cetyl trimethyl ammonium bromide(CTAB) method(TCM-CTAB) and three commonlyused extraction kits were tested for extraction of DNA from LDW samples. Experimental results indicated that DNA with the highest purity and concentration was obtained by using TCM-CTAB. To further evaluate the different extraction methods, amplification of the second internal transcribed spacer(ITS2) and the chloroplast genome trnL intron was carried out.The results have shown that PCR amplification was successful only with template of DNA extracted by using TCM-CTAB. Moreover, we performed high-throughput 454 sequencing using DNA extracted by TCM-CTAB. Data analysis showed that 3–4 out of 6 prescribed species were detected from LDW samples, while up to 5 contaminating species were detected, suggesting  相似文献   

3.
Salt cress (Thellungiella halophila), a close relative of the model plant Arabidopsis thaliana L., is an extremophile that is adapted to harsh saline environments. To mine salt-tolerance genes from this species, we constructed an entry cDNA library from the salt cress plant treated with salt-stress by using a modified cDNA synthesis and an improved recombinationassisted cDNA library construction method that is completely free of manipulations involving restriction enzymes and DNA ligase. This cDNA library construction procedure is significantly simplified and the quality of the cDNA library is improved. This entry cDNA library was subsequently shuttled into the destination binary vector pCB406 designed for plant transformation and expression via recombination-assisted cloning. The library is plant transformation ready and is used to transform Arabidopsis on a large scale in order to create a large collection of transgenic lines for functional gene mining.  相似文献   

4.
Different parts of plant species belonging to Solanaceae and Fabaceae families were screened for L-asparaginase enzyme (E.C.3.5.1.1.). Among 34 plant species screened for L-asparaginase enzyme. Withania somnifera L. was identified as a potential source of the enzyme on the basis of high specific activity of the enzyme. The enzyme was purified and characterized from W. somnifera, a popular medicinal plant in South East Asia and Southern Europe. Purification was carried out by a combination of protein precipitation with ammonium sulfate as well as Sephadex-gel filtration. The purified enzyme is a homodimer, with a molecular mass of 72 ± 0.5 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresisand size exclusion chromatography. The enzyme has a pH optimum of 8.5 and an optimum temperature of 37 ℃. The Km value for the enzyme is 6.1 × 10^-2 mmol/L. This is the first report for L-asparaginase from W. somnifera, a traditionally used Indian medicinal plant.  相似文献   

5.
Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study CrylA binding proteins. Sample preparation is important in two- dimensional electrophoresis (2-DE), so to determine a suitable BBMV preparation method in Helicoverpa armigera for 2-DE, we compared three published BBMV preparation methods mostly used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE). All methods yielded similar types and numbers of binding proteins, but in different quantities. The Abdul-Rauf and Ellar protocol was the best of the three, but had limitations. Sufficient protein quantity is important for research involving limited numbers of insects, such as studies of insect resistance to Bacillus thuringiensis in the field. Consequently, we integrated the three BBMV isolation methods into a single protocol that yielded high quantities of BBMV proteins from H. armigera larval midguts, which proved suitable for 2- DE analysis.  相似文献   

6.
7.
8.
The new cytoplasmic male sterile (CMS) line Yewei A and its maintainer line Yewei B, with better agronomic characteristics, have been developed from a mutant of V20B (a rice maintainer line) through transformation of genomic DNA of wild rice (Oryza minuta J. S. Presl. ex C. B. Presl.). Analysis of molecular markers, DNA sequences, and Southern blot revealed that high DNA polymorphism exists between the mutant and its receptor, indicating that the special DNA fragment from O. minuta may be integrated into the genome of Yewei B. Therefore, transformation of genomic DNA from distant relatives to the plant of a target receptor may open an avenue for creating a new rice germplasm.  相似文献   

9.
In this study, we developed a systematic evolution of ligands by exponential enrichment (SELEX) method using a combination of magnetic beads immobilization and flow cytometric measurement. As an example, the selection of streptavidin-specific aptamers was performed. In this protocol, the conventional SELEX procedure was optimized, fiirst using magnetic beads for target immobilization to facilitate highly efficient separation of the binding single-stranded DNA (ssDNA) aptamers from the unbound ssDNAs, and second using flow cytometry and fluorescein labeling to monitor the enrichment. The sensitivity of flow cytometry was adequate for ssDNA quantification during the SELEX procedures. The streptavidin-specific aptamers obtained in this work can be used as tools for characterization of the occupancy of streptavidin-modified surfaces with biotinylated target molecules. The method described in the study is also generally applicable to target molecules other than streptavidin.  相似文献   

10.
《植物生理学报》2013,(6):1992-1995
Dear Editor, The plant hormone indole-3-acetic acid (IAA) has long been used in plant culture media for practical applications and sci- entific inquiries. The use of IAA is complicated by the fact that IAA is a photo-labile compound. In Murashige and Skoog (MS) plant media (Murashige and Skoog, 1962), the concen- trations of salts and mineral nutrients are known to hasten the photodegradation of IAA under white light (Dunlap and Robacker, 1988). This degradation can be virtually eliminated by the use of a yellow-colored light filter that removes UV, violet, and some of the blue wavelengths from the incident light (Stasinopoulos and Hangarter, 1990). However, the use of yellow light clearly affects the quality of light that the plants under study receive. In addition to applications in plants, IAA has been used in human health applications.  相似文献   

11.
Various investigations have been so far performed for extraction of genomic DNA from plant tissues, in which the extracted intact DNA can be exploited for a diverse range of biological studies. Extraction of high quality DNA from leathery plant tissues (e.g., coniferous organs) appears to be a critical stage. Moreover, for some species such as Taxus trees, bioprocess engineering and biosynthesis of secondary metabolites (e.g., paclitaxel) is a crucial step due to the restrictions associated with extinction of these species. However, extraction of intact genomic DNA from these plants still demands a rapid, easy and efficient protocol. To pursue such aim, in the current work, we report on the development of a simple and highly efficient method for the extraction of DNA from Taxus baccata. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone and RNA contamination was resolved using LiCl. By employing this method, high quality genomic DNA was successfully extracted from leaves of T. baccata. The quality of extracted DNA was validated by various techniques such as RAPD marker, restriction digestions and pre-AFLP. Upon our findings, we propose this simple method to be considered for extraction of DNA from leathery plant tissues.  相似文献   

12.
Large‐scale DNA molecular studies require reliable and efficient tools for DNA extractions. However, for some plant species and brown algae, isolation of high‐quality DNA is difficult. We developed a novel method for isolating high‐quality DNA from the polysaccharide‐rich and polyphenol‐rich brown algae based on a commercial kit and protocol (Qiagen) by optimizing the lysis step and including a chloroform/isoamyl alcohol supplementary purification step. DNAs from 24 brown algal species extracted using the original and the modified Qiagen protocol were compared for yield, quality, and effectiveness in PCR amplification. There was no significant difference in the yields between protocols. However, a statistically significant increase in DNA purity was obtained with the modified protocol, for which the A260/A280 and A260/A230 absorbance ratios averaged 1.66 ± 0.05 and 1.31 ± 0.01, respectively, compared to 1.37 ± 0.04 and 0.52 ± 0.04 with the original protocol. DNAs extracted by the modified procedure were more successfully amplified by PCR (nuclear, mitochondrial, and chloroplastic regions) than DNAs extracted using the original commercial kit and protocol. Importantly, the modified protocol can be applied in a high‐throughput (e.g., 96‐well plate) format, allowing a higher efficiency for downstream molecular analysis. In addition, improved DNA quality could increase its stability for long‐term storage.  相似文献   

13.
一种提取质粒DNA的改良方法   总被引:17,自引:1,他引:16  
本文详细介绍了一种改良碱裂解法提取质粒DNA的方法,该法采用NH4Ac代替苯酚和氯份的抽提过程,得率高,质量好,完全达到了分子生物学常规实验的要求,如酶切、连接、转化大肠杆菌、PCR等,甚至用于序列测定和植物遗传转化,该法重复性好,操作简单、实用.  相似文献   

14.
高质量的基因组DNA是分子生物学研究的基础,而从富含糖类和次生代谢物且异质性强的植物材料中分离DNA相对困难。本方法在CTAB法和商业DNA提取试剂盒的基础上,在裂解细胞之前,对植物材料进行预处理.去除干扰DNA提取的代谢物,并在后续步骤中进行了一些优化。该方法适于多种不同的植物种类,所提取的基因组DNA质量较好,能满足下一步基因操作的要求,是一种通用的植物基因组DNA提取方法。  相似文献   

15.
A simple method for extracting DNA from various in vitro or ex vitro Pinus tissues is described. Good yield and high quality RNA-free DNA ready to use in molecular biology assays or analytical analysis was obtained. DNA quality was measured analyzing absorption spectra between 200 and 300 nm, A260/280 ratio and HPCE. This protocol was tested with no modification in a wide range of Pinus tissues from recalcitrant in vitro callus to mature field scions improving the results obtained with previous protocols. As the protocol is simple, almost universal and inexpensive it may be used for routine isolation from Pinus tissues. An isolation troubleshooting table was included to facilitate the setting up of reported protocol to other plant species.  相似文献   

16.
A protocol is described for the extraction of geminiviral DNA from bhendi yellow vein mosaic virus-infectedAbelmoschus esculentus (known as bhendi or okra) containing high amounts of mucilage and other phenolic compounds. This method involves extraction with a buffer containing sodium citrate at pH 6 and PEG precipitation of the virus followed by alkali lysis. The extraction buffer eliminates the mucilage and other polyphenols, PEG precipitates the viral particles and DNA and the alkali lysis enriches the replicative forms of the viral DNA. The extracted DNA could be digested with restriction enzymes and cloned without any interference from chromosomal DNA. The quality of the DNA extracted by this method was compared to three other common plant DNA extraction protocols and was found superior. This method was used for PCR amplification and cloning of the 2.7 kbp DNA-A of BYVMV.  相似文献   

17.
A protocol is described for rapid DNA isolation from Malvaceae plant species and different tissues of Bixaceae that contain large amounts of polysaccharides, polyphenols, and pigments that interfere with DNA extractions. The method is a modification of Dellaporta et al. The current protocol is simple, and no phenolchloroform extraction, ethanol, or isopropranol precipitation is required. The method is based in the incubation of soluble DNA with silica, mix in batch during the extraction. The procedure can be completed in 2 h and many samples can be processed at the same time. DNA of excellent quality was recovered and used for polymerase chain reaction (PCR) amplification, restriction enzyme digestion, and Southern blot analysis. The method was used with healthy Bixa orellana and virus-infected Malvaceae plants.  相似文献   

18.
The quality and yield of extracted DNA are critical for the majority of downstream applications in molecular biology. Moreover, molecular techniques such as quantitative real-time PCR (qPCR) are becoming increasingly widespread; thus, validation and cross-laboratory comparison of data require standardization of upstream experimental procedures. DNA extraction methods depend on the type and size of starting material(s) used. As such, the extraction of template DNA is arguably the most significant variable when cross-comparing data from different laboratories. Here, we describe a reliable, inexpensive and rapid method of DNA purification that is equally applicable to small or large scale or high-throughput purification of DNA. The protocol relies on a CTAB-based buffer for cell lysis and further purification of DNA with phenol : chloroform : isoamyl alcohol. The protocol has been used successfully for DNA purification from rumen fluid and plant cells. Moreover, after slight alterations, the same protocol was used for large-scale extraction of DNA from pure cultures of Gram-positive and Gram-negative bacteria. The yield of the DNA obtained with this method exceeded that from the same samples using commercial kits, and the quality was confirmed by successful qPCR applications.  相似文献   

19.
Genetic studies and pathogen detection in plants using molecular methods require the isolation of DNA from a large number of samples in a short time span. A rapid and versatile protocol for extracting high-quality DNA from different plant species is described. This method yields from 1 to 2 mg of DNA per gram of tissue. The absorbance ratios (A260/A280) obtained ranged from 1.6 to 2.0. A minimal presence of contaminating metabolites (as polymerase chain reaction [PCR] inhibitors) in samples and a considerable savings in reagents are characteristics of this protocol, as well as the low cost of the analysis per sample. The quality of the DNA was suitable for PCR amplification.  相似文献   

20.
Origanum onites is an economically important medicinal plant with high essential oil content. Lack of an appropriate DNA isolation procedure is a limiting factor for any molecular study of this plant. We have used a protocol for genomic DNA isolation based on a hexadecyltrimethylammonium bromide (CTAB) method described for other plant species. The method involves mortar grinding of leaf tissue, modified CTAB extraction using high salt concentrations and polyvinyl pyrrolidone, and successive isoamyl alcohol/chloroform extractions. The yield was approx. 20 microg DNA per 200 mg of initial fresh plant material. The genomic DNA obtained by this method was suitable to be used in restriction digests, inter simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) reactions. This extraction method should facilitate the molecular analysis of Origanum chemotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号