首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
目的:探讨microRNA 499(miR-499)慢病毒转染对诱导大鼠骨髓来源间充质干细胞(BM-MSCs)向心肌样细胞分化的作用。方法:取第四代Wistar大鼠骨髓来源间充质干细胞进行流式细胞检测,鉴定干细胞表面特异标记物。使用符合干细胞鉴定标准的细胞批次用于后续实验。实验设置miR499慢病毒转染、慢病毒空白转染2个处理组,分别于处理后即日、1d,3d,5d,7d收集细胞进行下列实验:实时荧光定量PCR检测心肌重要转录因子GATA4、NKx2.5和MEF2C的mRNA表达,western-blot检测心肌特异蛋白I(cTnI)的表达。结果:培养第四代Wistar大鼠骨髓来源间充质干细胞表达干细胞表面特异标记物,可用于实验。大鼠骨髓来源间充质干细胞microRNA 499慢病毒载体转染后microRNA 499表达明显升高,且转染后1d,3d,5d,7d,GATA4、NKx2.5和MEF2C的mRNA表达逐渐增强。慢病毒空白转染组未见明显变化。western-blot检测自第3天开始可见cTnI阳性表达条带,慢病毒空白转染组未检测到明显阳性表达条带。结论:microRNA 499可诱导大鼠骨髓来源间充质干细胞向心肌样细胞分化。  相似文献   

4.
5.
Bone marrow-derived mesenchymal stem cells (MSCs) are pluripotent stem cells that show a vital potential in the clinical application for cell transplantation. In the present paper, proteomic techniques were used to approach the protein profiles associated with porcine bone marrow MSCs and investigate the regulation of MSC proteins on the effect of 5-azacytidine (5-aza). Over 1,700 protein species were separated from MSCs according to gel analysis. Compared with the expression profiling of control MSCs, there were 11 protein spots up-regulated and 26 downregulated in the protein pattern of 5-aza-treated cells. A total of 21 proteins were successfully identified by MALDI-TOF-MS analysis, among which some interesting proteins, such as alpha B-crystallin, annexin A2, and stathmin 1, had been reported to involve in cell proliferation and differentiation through different signaling pathways. Our data should be useful for the future study of MSC differentiation and apoptosis.  相似文献   

6.
Recent studies have shown that block wnt/β-catenin signaling pathway is integrant for cardiomyocytes differentiation from bone marrow mesenchymal stem cells (MSCs). By transducing the MSCs with lentivirus which contain β-catenin interference RNA, we screened out the non β-catenin expression clone. In the establishment of knockdown β-catenin in MSCs, we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (salB), and cardiomyocytes lysis medium (CLM) in inducing MSCs to differentiate into cardiomyocyte-like cells. A method for culturing MSCs and cardiomyocytes was established. Purified MSCs were investigated by flow cytometry. The MSCs were positive for CD90 and CD29, but negative for CD34 and CD45. Meanwhile, the cardiomyocytes contracted spontaneously after 24 h of seeding into the plates. The fourth-passage non-β-catenin expression MSCs were divided into eight groups: control group, 5-aza, salB, CLM, 5-aza + salB, 5-aza + CLM, salB + CLM, and 5-aza + salB + CLM. The gene and protein expression of cTnT, α-actin, β-myosin, β-catenin, and GSK-3β were detected by quantitative real-time PCR and Western blotting. Our results showed that cTnT expression in 5-aza + salB + CLM group was ninefold higher than in the control group in the non-β-catenin MSCs model, implying that cardiomyocytes differentiation from MSCs is an extremely complicated process and it is necessary to consider the internal and external environmental conditions, such as suitable pharmaceutical inducers, cardiomyocytes microenvironments, inhibition of the negative signaling pathway and so on.  相似文献   

7.
目的研究脐带间充质干细胞(UC-MSC)体外分化为心肌细胞的可行性以及观察UC-MSC体内移植对心肌梗死模型小鼠的治疗效果。方法 10μmol/L 5-氮胞苷(5-aza)体外诱导UC-MSC 14 d,通过RT-PCR、免疫荧光染色鉴定其分化效果;采用腹腔注射盐酸异丙肾上腺素(ISO)每只3.0 mg/(kg/d),制作心肌梗死模型鼠;在注射ISO 48 h后,实验组将DAPI标记的UC-MSC经两次尾静脉移植给心肌梗死模型鼠,移植后第4周和第8周,分别采集实验小鼠的心脏、脾脏,以未移植细胞组的小鼠心肌损伤模型作为对照,通过心脏指数和脾脏指数测量,免疫荧光和碱性复红-苦味酸(HBFP)染色鉴定其体内分化和修复作用。结果 RT-PCR分析表明诱导的UC-MSC表达心肌特异性基因:心肌α-actin、TBX5、GATA4和NKx2.5,免疫荧光染色显示诱导细胞呈心肌α-actin和NKx2.5阳性,且呈双核现象。尾静脉移植后第4周和第8周,模型受体鼠心脏均发现有DAPI阳性细胞迁移至心肌组织且呈现心肌α-actin阳性,HBFP染色及心脏和脾脏指数结果显示移植UC-MSC对心肌损伤的模型鼠有明显的修复和治疗效果。结论 UC-MSC在体外经5-aza诱导可定向分化为心肌细胞,尾静脉体内移植UC-MSC对心肌损伤小鼠有明显的治疗效果。  相似文献   

8.
9.
10.
11.
12.
13.
14.
There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10?1 μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.  相似文献   

15.
Wei F  Wang T  Liu J  Du Y  Ma A 《Experimental cell research》2011,(18):2661-2670
Mesenchymal stem cells (MSCs) are regarded as a promising source of cell-based therapy for heart injury. In fact, less than 30% of MSCs contribute to cardiomyocytes differentiation, and the isolation procedure and biological characteristics of this population of cells remain unknown. Here we isolate and investigate the biological characteristics of this subpopulation of MSCs. Twenty four MSC clones were randomly selected using single-cell monoclonal technology. After induced with 5-azacytidine, eight clones displayed cardiomyocyte-like morphologies, and highly (over 90%) expressed cardiac-specific markers cTnT and α-actin, and displayed transient outward K+ current (Ito), inwardly rectifying K+ current (IK1) and delayed rectifier K+ current (IKDR), which were typical of cardiomocytes. Other clones merely showed Ito current, and the current densities were different from those of cardiomyocytes. In contrast to the other clones, before induced with 5-azacytidine, the eight clones expressed early cardiac markers GATA4 and NKX2.5, but not cTnT, α-actin, CD44 and CD90, and had no potentials for adiopogenesis, osteogenesis or chondrogenesis after induction. Our data suggest that the subgroup of MSCs that contributes to cardiomyocytes differentiation is cardiac progenitor cells. Moreover, we show the preliminary purification of this population of cells with a high potential for cardiomyocytes differentiation using single-cell monoclonal technology.  相似文献   

16.
近年的研究发现,在心肌细胞分化过程中,转录因子可以与表观修饰蛋白质结合进行更为精细的转录调控.作为转录因子的胰岛素基因增强子结合蛋白1(islet1, ISL1),在心血管发育过程中发挥至关重要的作用.然而, ISL1是否能够与表观修饰蛋白质相互作用,从而发挥更为精细的调控作用,目前尚未明确.本室研究发现,ISL1在小鼠胚胎干细胞向心肌细胞分化过程中,能够与组蛋白去甲基化酶PHD指蛋白8(PHF8)相互作用从而促进分化. 实时RT-PCR和Western 印迹的方法检测显示,ES细胞向心肌细胞分化过程中ISL1和PHF8具有相似的表达谱.通过免疫共沉淀的方法检测分化过程中ISL1与PHF8的结合,通过染色质免疫沉淀的方法对二者在ISL1下游靶基因增强子区的结合水平进行检测,利用实时RT-PCR检测二者的相互结合对心肌细胞分化的影响.结果显示,ISL1能够与PHF8相互作用,共同结合在ISL1下游靶基因Mef2c和Myocd的增强子区,协同促进ES细胞向心肌细胞的分化.本研究证实,在心肌细胞分化过程中,ISL1存在与表观修饰蛋白质PHF8的相互作用,从而进一步促进心肌细胞的分化.  相似文献   

17.
Increasing evidence suggests that the mesenchymal stem cells (MSCs) derived from placenta of fetal origin (fPMSCs) are superior to MSCs of other sources for cell therapy. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications, during which MSCs may undergo genetic and/or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic and epigenetic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical settings. To date, the genetic and epigenetic stability of fPMSCs after long-term in vitro expansion has not been fully investigated. In this report, alterations to histone acetylation and consequence on the expression pattern of fPMSCs following in vitro propagation under serum-free conditions were explored. The results show that fPMSCs maintain their MSC characteristics before they reached a senescent state. Furthermore, acetylation modification patterns were changed in fPMSCs along with gradually increased global histone deacetylase (HDAC) activity and expression of HDAC subtypes HDAC4, HDAC5 and HDAC6, as well as a down-regulated global histone H3/H4 acetylation during in vitro culturing. In line with the acetylation alterations, the expression of oncogenes Oct4, Sox2 and TERT were significantly decreased over the propagation period. Of note, the down-regulation of Oct4 was strongly associated with changes in acetylation. Intriguingly, telomere length in fPMSCs did not significantly change during the propagating process. These findings suggest that human fPMSCs may be a safe and reliable resource of MSCs and can be propagated under serum-free conditions with less risk of spontaneous malignancy, and warrants further validation in clinical settings.  相似文献   

18.
19.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号