首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The following loci, on human chromosome 13, have been newly assigned to sheep chromosome 10 using chromosomally characterized sheep-hamster cell hybrids: gap junction protein, beta 2, 26 kDa (connexin 26) (GJB2); gap junction protein, alpha 3, 46 kDa (connexin 46) (GJA3), and esterase D/formylglutathione hydrolase (ESD). This assignment of ESD is consistent with comparative mapping evidence, but not with an earlier report of it on sheep chromosome 3p26-p24. Cell hybrid analysis confirmed the location of another human chromosome 13 locus, retinoblastoma 1 (including osteosar-coma) (RBI), and the anonymous ovine genomic sequence RP11 on sheep chromosome 10. Isotopic in situ hybridization was used to regionally localize RP11 on to sheep 10q15-q22. The location of microsatellites AGLA226, OarDB3, OarHH41, OarVH58, and TGLA441, previously assigned to sheep chromosome 10 by linkage analysis, was confirmed by polymerase chain reaction using the cell hybrid panel. These mapping data provide further evidence that sheep chromosome 10 is the equivalent of cattle chromosome 12, and that these chromosomes show extensive conserved synteny with human chromosome 13.  相似文献   

2.
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that may be involved in regulation of the stress response and food intake behavior in mammals. MCH and two other putative neuropeptides, NEI and NGE, are encoded by the same precursor, designated pro-melanin-concentrating hormone (PMCH). A panel of somatic cell hybrids segregating either human or rat chromosomes was used to determine the chromosomal localization of the PMCH locus. It was assigned to human chromosome 12q and to rat chromosome 7. This is the first neuropeptide-encoding gene found in this new synteny group conserved in rat and human.  相似文献   

3.
Four bovine BAC clones (0494F01, 0069D07, 0060B06, and 0306A12) containing MUC1, as confirmed by mapping MUC1 on a RH3000 radiation hybrid panel, were hybridised on R-banded chromosomes of cattle (BTA), river buffalo (BBU), sheep (OAR) and goat (CHI). MUC1 was FISH-mapped on BTA3q13, BBU6q13, OAR1p13 and CHI3q13 and both chromosomes and chromosome bands were homoeologous confirming the high degree of chromosome homoeologies among bovids and adding more information on the pericentromeric regions of these species' chromosomes. Indeed, MUC1 was more precisely assigned to BTA3 and assigned for the first time to BBU6, OAR1p and CHI3. Moreover, detailed and improved cytogenetic maps of BTA3, CHI3, OAR1p and BBU6 are shown and compared with HSA1.  相似文献   

4.
The regional localization of five reference loci to sheep chromosomes is reported. The newly mapped loci are the T-cell receptor, beta ( TCRB ), coagulation factor X ( F10 ), laminin gamma 1 ( LAMC1 ), cyclic GMP rod phosphodiesterase, alpha ( PDEA ) and fibroblast growth factor 2 ( FGF2 ). The assignments of PDEA and LAMC1 to chromosomes 5q23–q31 and 12q22–q24 respectively provide the first markers physically assigned to these chromosomes. They also allow the provisional assignment of sheep syntenic group U19 to chromosome 5 and U1 to chromosome 12. The mapping of FGF2 to chromosome 17q23–q25 anchors the unassigned linkage group 'A' to chromosome 17, and the assignment of TCRB to chromosome 4q32–qter facilitates the orientation of a linkage group on sheep chromosome 4. The mapping of F10 to sheep chromosome 10q23–qter supports the recent assignment of bovine syntenic group U27 to cattle chromosome 12, as sheep chromosome 10 and cattle chromosome 12 are banded homologues.  相似文献   

5.
Chromosomal localization of the genes encoding three homologous human proteins, the ANPRA, ANPRB, and ANPRC cell surface receptors, was determined by polymerase chain reaction (PCR) analysis of genomic DNA from somatic cell hybrids. The ANPRA gene was assigned to 1q12----qter by intron-specific PCR. The ANPRB gene was assigned to 9p11----p22 using species-specific length variation in PCR fragments. The ANPRC gene was assigned to chromosome 5 using human-specific PCR primers identified by screening a human primer panel on parental DNA samples (shotgun primer screening). Chromosomal assignments based on PCR analysis were confirmed and the genes further sublocalized by in situ hybridization of cloned cDNA probes to human metaphase chromosomes. The ANPRA gene was sublocalized to 1q21----q22, the ANPRB gene to 9p12----p21, and the ANPRC gene to 5p13----p14.  相似文献   

6.
Seven loci that have been previously mapped to human and mouse chromosomes have now been regionally assigned to six sheep chromosomes. Nerve growth factor β (NGFB), antigen CD3 ζ polypeptide (CD3Z), inhibin β A (INHBA), estrogen receptor (ESR), rhodopsin (RHO), insulin-like growth factor 2 (IGF2), and myelin basic protein (MBP) were mapped by in situ hybridization to sheep chromosomes 1p24-p21, 1p14-p11, 4q26-q31, 8q25-q27, 19q23-qter, 21q21-qter, and 23q11-q12.3, respectively. ESR, RHO, IGF2, and MBP are the first markers to be assigned to their respective sheep chromosomes. These new data allow the previously unassigned sheep linkage groups H, J, K, and S to be provisionally assigned to chromosomes 21, 19, 4, and 8, respectively. The unassigned sheep syntenic groups U8 and U13 are provisionally assigned to sheep chromosomes 8 and 21, respectively. The new assignments support the emerging picture that there is extensive conservation of human chromosomal segments in the sheep and cattle genomes. The position of another evolutionary breakpoint on human chromosome 1q is suggested.  相似文献   

7.
The human genes encoding the alpha and beta forms of the retinoic acid receptor are known to be located on chromosomes 17 (band q21.1:RARA) and 3 (band p24:RARB). By in situ hybridization, we have now localized the gene for retinoic acid receptor gamma, RARG, on chromosome 12, band q13. We also mapped the three retinoic acid receptor genes in the mouse, by in situ hybridization, on chromosomes 11, band D (Rar-a); 14, band A (Rar-b); and 15, band F (Rar-g), respectively, and in the rat, using a panel of somatic cell hybrids that segregate rat chromosomes, on chromosomes 10 (RARA), 15 (RARB), and 7 (RARG), respectively. These assignments reveal a retention of tight linkage between RAR and HOX gene clusters. They also establish or confirm and extend the following homologies: (i) between human chromosome 17, mouse chromosome 11, and rat chromosome 10 (RARA); (ii) between human chromosome 3, mouse chromosome 14, and rat chromosome 15 (RARB); and (iii) between human chromosome 12, mouse chromosome 15, and rat chromosome 7 (RARG).  相似文献   

8.
The structural gene (beta GALA) coding for lysosomal beta-galactosidase-A (EC 3.2.1.23) has been assigned to human chromosome 3 using man--mouse somatic cell hybrids. Human beta-galactosidase-A was identified in cell hybrids with a species-specific antiserum to human liver beta-galactosidase-A. The antiserum precipitates beta-galactosidase-A from human tissues, cultured cells, and cell hybrids, and recognizes cross-reacting material from a patient with GM1 gangliosidosis. We have analyzed 90 primary man--mouse hybrids derived from 12 separate fusion experiments utilizing cells from 9 individuals. Enzyme segregation analysis excluded all chromosomes for beta GALA assignment except chromosome 3. Concordant segregation of chromosomes and enzymes in 16 cell hybrids demonstrated assignment of beta GALA to chromosome 3; all other chromosomes were excluded. The evidence suggests that GM1 gangliosidosis is a consequence of mutation at this beta GALA locus on chromosome 3.  相似文献   

9.
Tissue inhibitor of metalloproteinases-2 (TIMP2) is a natural inhibitor of several proteinases that are involved in the degradation of the extracellular matrix. By means of somatic cell hybrids segregating human chromosomes, the gene encoding this inhibitor was assigned to human chromosome 17. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region (17q25) of the chromosome.  相似文献   

10.
Five new loci, myogenic factor 5 (MYF5), complement 1 receptor (CIR), myosin-like heavy chain (MYHL), islet amyloid polypeptide (IAPP), and alpha-2-macroglobulin receptor (A2MR), were mapped onto sheep chromosome 3q by Southern hybridization to a panel of chro-mosomally characterized sheep × hamster cell hybrid lines. The location of the triose phosphate isomerase (TPI1) gene and one of the nucleolar organizer regions (RNR) on sheep 3q was confirmed by Southern analysis. This study provides further evidence for the existence of a large conserved chromosomal segment comprising much of sheep chromosome 3q, cattle chromosome 5, and human chromosome 12. The distal evolutionary breakpoint on human chromosome 12, producing the chromosomal segment U23 in cattle marked by aldehyde dehydrogenase (ALDH2), also produces a separate segment in sheep. Neither ALDH2 nor pancreatic lipase (PLA2), which is also distally located on human chromosome 12, were mapped onto sheep chromosome 3q.  相似文献   

11.
Type XIII collagen is a recently described collagen that resembles in structure the short-chain collagens of types IX, X, and XII. Unlike any other collagen, the type XIII is found in several different forms generated through alternative splicing. A 2.0-kb genomic fragment from the human alpha 1 (XIII) collagen gene was isolated and shown by DNA sequencing to contain exon 12 as counted from the 3' end. This fragment was used as a probe to localize the gene. The gene (COL13A1) was assigned to chromosome 10 by hybridization of the probe to DNA isolated from a panel of human-mouse somatic cell hybrids containing different human chromosomes. Furthermore, the gene was mapped to the q22 region by in situ hybridization to metaphase chromosomes.  相似文献   

12.
Fong  Dunne  Smith  David I.  Hsieh  Wang-Ting 《Human genetics》1991,87(2):189-192
Summary Kinins, peptide products of kininogens, may be involved in hypertensive and diabetic diseases, and inflammatory disorders. The human kininogen gene (KNG) has been mapped to chromosome 3, using a panel of human-hamster somatic cell hybrids by polymerase chain reaction of hybrid DNA with gene-specific primers. KNG was further assigned to 3q26-3qter, using DNA from a second panel of chromosome 3 deletion mapping cell hybrids.  相似文献   

13.
The Alu-polymerase chain reaction (Alu-PCR) was applied to selectively amplify DNA sequences from human chromosome 6 using a single primer (A1) directed to the human Alu consensus sequence. A specific amplification pattern was demonstrated for a panel of eight somatic cell hybrids containing different portions of chromosome 6. This PCR pattern permits the identification of submicroscopic DNA alterations and can be utilized as a reference for additional chromosome 6-specific hybrids. To obtain new chromosome 6-specific markers we established two libraries from PCR-amplified sequences using two somatic cell hybrids (MCH381.2D and 640-5A). Out of a total of 109 clones that were found to be chromosome 6 specific, 13 clones were regionally assigned. We also included a procedure that allows the isolation of chromosome 6-specific markers from hybrids that contain human chromosomes other than 6. Our results will contribute to the molecular characterization of chromosome 6 by fostering characterization of somatic cell hybrids and by the generation of new regionally assigned DNA markers.  相似文献   

14.
The genes encoding two pentraxins, C-reactive protein (CRP) and serum amyloid P component (SAP), are located on the proximal long arm of human chromosome 1. Mapping of the CRP and SAP genes between the centromere and band q32 was achieved by Southern blot analysis of DNA from a panel of human × Chinese hamster somatic cell hybrids carrying defined fragments of human chromosome 1. Both genes were localized more precisely between bands q12 and q23 by in situ hybridization to human metaphase chromosomes.  相似文献   

15.
Mapping of human chromosome 22 with a panel of somatic cell hybrids   总被引:7,自引:0,他引:7  
The adenylosuccinate lyase (ADSL) which is essential for generating adenylate, maps to the long arm of chromosome 22. By using a Chinese hamster ovary cell line deficient in ADSL activity, we have constructed a set of 17 somatic cell hybrids containing defined regions of human chromosome 22. This panel was extended with six additional hybrids, obtained in other laboratories using various methods of selection. Southern analysis of the hybrids with 38 chromosome 22 probes defined 14 different subregions which could be linearly organized on the long arm of chromosome 22. The order of the probes thus deduced is fully compatible with their previous localization and with the genetic map. The ADSL gene was further sublocalized between the MB and D22S22. This panel, which enables the rapid assignment of chromosome 22 single copy probes to small subregions, will be an important tool in the construction of a detailed physical map of this part of the genome.  相似文献   

16.
Somatic cell hybrids heterozygous at the emetine resistance locus (emtr/emt+) or the chromate resistance locus (chrr/chr+) are known to segregate the recessive drug resistance phenotype at high frequency. We have examined mechanisms of segregation in Chinese hamster cell hybrids heterozygous at these two loci, both of which map to the long arm of Chinese hamster chromosome 2. To follow the fate of chromosomal arms through the segregation process, our hybrids were also heterozygous at the mtx (methotrexate resistance) locus on the short arm of chromosome 2 and carried cytogenetically marked chromosomes with either a short-arm deletion (2p-) or a long-arm addition (2q+). Karyotype and phenotype analysis of emetine- or chromate-resistant segregants from such hybrids allowed us to distinguish four potential segregation mechanisms: (i) loss of the emt+- or chr+-bearing chromosome; (ii) mitotic recombination between the centromere and the emt or chr loci, giving rise to homozygous resistant segregants; (iii) inactivation of the emt+ or chr+ alleles; and (iv) loss of the emt+- or chr+-bearing chromosome with duplication of the homologous chromosome carrying the emtr or chrr allele. Of 48 independent segregants examined, only 9 (20%) arose by simple chromosome loss. Two segregants (4%) were consistent with a gene inactivation mechanism, but because of their rarity, other mechanisms such as mutation or submicroscopic deletion could not be excluded. Twenty-one segregants (44%) arose by either mitotic recombination or chromosome loss and duplication; the two mechanisms were not distinguishable in that experiment. Finally, in hybrids allowing these two mechanisms to be distinguished, 15 segregants (31%) arose by chromosome loss and duplication, and none arose by mitotic recombination.  相似文献   

17.
Eight primary man-mouse (C11D/TK-) hybrids, twenty three primary and seven secondary man-hamster (CH/HGPRT-) were analyzed for human phosphoglycolate phosphatase (PGP) and for human chromosomes. The following results were obtained: 1. A positive correlation is observed between the chromosome 16 and PGP. 15 hybrids are chr.16+PGP+, 14 hybrids are chr.16-PGP- and 4 hybrids are chr.16-PGP+. 2. The percentage of dissociation between PGP and the chr.16 is low (12%) in comparison with the high percentage of dissociation between PGP and the other autosomes (between 37% and 65%). 3. Excepted the chromosome 16, the other autosomes are observed in hybrids PGP-. These different results indicate the localization of the gene for human PGP on the chromosome 16. The dissociation results chr.16-PGP+ are explained by the breakage of the chr.16 in the hybrids.  相似文献   

18.
Summary A panel of twenty independently derived clones of man-mouse somatic cell hybrids isolated from fusions involving eight different parent cell combinations simultaneously analyzed for human chromosomes, citrate synthase, and a large number of other enzyme markers firmly or tentatively assigned to individual human chromosomes have provided direct evidence for a firm assignment of the structural gene coding for citrate synthase (CS) to human chromosome 12.  相似文献   

19.
In humans, the poly(A)-binding proteins (PABPs) comprise a small nuclear isoform and a conserved gene family that displays at least three functional proteins: PABP1, inducible PABP (iPABP), and PABP3, plus four pseudogenes (1, 2, 3, and PABP4). In situ hybridization of PABP3 cDNA as the probe on metaphasic chromosomes have revealed five possible loci for this gene family at 2q21-q22, 13q11-q12, 12q13.3-q15, 8q22, and 3q24-q25. Amplifications of specific DNA fragments from a human-rodent somatic cell hybrid panel have allowed us to associate PABP1 and PABP3 with 8q22 and 13q11-q12, respectively. The iPABP gene has been assigned to chromosome 1. This result, compared with radiation hybrid database information, strengthens the location of this gene to 1p32-p36. The pseudogenes PABP4, 1, and 2 have been assigned to chromosomes 15, 4, and 14, respectively. Three loci detected on chromosome spreads are not associated with any amplified fragment. They might represent other related PABP genes not yet identified.  相似文献   

20.
We have assigned the human histamine H1-receptor gene to chromosome 3 by Southern blot analysis of a chromosome mapping panel constructed from humanhamster somatic cell hybrids. This assignment was confirmed by in situ hybridization on metaphase chromosomes and involved bands 3p14–p21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号