首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between the plasmid-borne copper resistance determinant, pco, and the main copper export system in Escherichia coli have been investigated and no direct interaction has been found. The PcoE and PcoC proteins are periplasmic and PcoC binds one Cu ion per protein molecule. PcoA is also periplasmic and can substitute for the chromosomally encoded CueO protein. The pco determinant is proposed to exert its effect through periplasmic handling of excess copper ions and to increase the level of resistance to copper ions above that conferred by copA alone.  相似文献   

2.
PcoC is a soluble periplasmic protein encoded by the plasmid-born pco copper resistance operon of Escherichia coli. Like PcoA, a multicopper oxidase encoded in the same locus and its chromosomal homolog CueO, PcoC contains unusual methionine rich sequences. Although essential for copper resistance, the functions of PcoC, PcoA, and their conserved methionine-rich sequences are not known. Similar methionine motifs observed in eukaryotic copper transporters have been proposed to bind copper, but there are no precedents for such metal binding sites in structurally characterized proteins. The high-resolution structures of apo PcoC, determined for both the native and selenomethionine-containing proteins, reveal a seven-stranded beta barrel with the methionines unexpectedly housed on a solvent-exposed loop. Several potential metal-binding sites can be discerned by comparing the structures to spectroscopic data reported for copper-loaded PcoC. In the native structure, the methionine loop interacts with the same loop on a second molecule in the asymmetric unit. In the selenomethionine structure, the methionine loops are more exposed, forming hydrophobic patches on the protein surface. These two arrangements suggest that the methionine motifs might function in protein-protein interactions between PcoC molecules or with other methionine-rich proteins such as PcoA. Analytical ultracentrifugation data indicate that a weak monomer-dimer equilibrium exists in solution for the apo protein. Dimerization is significantly enhanced upon binding Cu(I) with a measured delta(deltaG degrees )相似文献   

3.
Summary Several cell-wall and membrane affecting agents were tested for causing release of periplasmic proteins of E. coli B as compared by gel electrophoresis. Osmotic shock and polymyxin-treatment yielded the best differentiated protein patterns. The periplasmic proteins derived from different E. coli strains and other gram-negative bacteria by polymyxin-treatment were compared. Whereas related strains showed similarities in the protein positions, unrelated gram-negative bacteria showed great differences of the protein bands. The polymyxin-induced liberation of periplasmic proteins was dependent upon the growth phase and growth media of the bacteria and was severely inhibited by 10-2 M magnesium chloride.Abbreviations PX polymyxin B - CTABr cetyltrimethylammonium-bromide - tris trishydroxymethylaminomethane - EDTA ethylenediaminetetraacetate - LPS lipopolysaccharide  相似文献   

4.
The multicopper oxidase CueO oxidizes toxic Cu(I) and is required for copper homeostasis in Escherichia coli. Like many proteins involved in copper homeostasis, CueO has a methionine-rich segment that is thought to be critical for copper handling. How such segments function is poorly understood. Here, we report the crystal structure of CueO at 1.1 Å with the 45-residue methionine-rich segment fully resolved, revealing an N-terminal helical segment with methionine residues juxtaposed for Cu(I) ligation and a C-terminal highly mobile segment rich in methionine and histidine residues. We also report structures of CueO with a C500S mutation, which leads to loss of the T1 copper, and CueO with six methionines changed to serine. Soaking C500S CueO crystals with Cu(I), or wild-type CueO crystals with Ag(I), leads to occupancy of three sites, the previously identified substrate-binding site and two new sites along the methionine-rich helix, involving methionines 358, 362, 368, and 376. Mutation of these residues leads to a ∼4-fold reduction in kcat for Cu(I) oxidation. Ag(I), which often appears with copper in nature, strongly inhibits CueO oxidase activities in vitro and compromises copper tolerance in vivo, particularly in the absence of the complementary copper efflux cus system. Together, these studies demonstrate a role for the methionine-rich insert of CueO in the binding and oxidation of Cu(I) and highlight the interplay among cue and cus systems in copper and silver homeostasis.  相似文献   

5.
Induction of the wild type cholera toxin operon (ctxAB) from multicopy clones inEscherichia coliinhibited growth and resulted in low yields of cholera toxin (CT). We found that production of wild type CT or its B subunit (CT-B) as a periplasmic protein was toxic forE. coli,but by replacing the native signal sequences of both CT-A and CT-B with the signal sequence from the B subunit ofE. coliheat-labile enterotoxin LTIIb we succeeded for the first time in producing CT holotoxin in high yield inE. coli.Based on these findings, we designed and constructed versatile cloning vectors that use the LTIIb-B signal sequence to direct recombinant native proteins with high efficiency to the periplasm ofE. coli.We confirmed the usefulness of these vectors by producing two other secreted recombinant proteins. First, usingphoAfromE. coli,we demonstrated that alkaline phosphatase activity was 17-fold greater when the LTIIb-B signal sequence was used than when the native leader for alkaline phosphatase was used. Second, using thepspAgene that encodes pneumococcal surface protein A fromStreptococcus pneumoniae,we produced a 299-residue amino-terminal fragment of PspA inE. coliin large amounts as a soluble periplasmic protein and showed that it was immunoreactive in Western blots with antibodies against native PspA. The vectors described here will be useful for further studies on structure–function relationships and vaccine development with CT and PspA, and they should be valuable as general tools for delivery of other secretion-competent recombinant proteins to the periplasm inE. coli.  相似文献   

6.
Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal “twin arginine” signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.  相似文献   

7.
Summary The cellular location of the haemolysin of Vibrio cholerae El Tor strain 017 has been analyzed. This protein is found both in the periplasmic space and the extracellular medium in Vibrio cholerae. However, when the cloned gene, present on plasmid pPM431, is introduced into E. coli K-12 this protein remains localized predominantly in the periplasmic space with no activity detected in the extracellular medium. Mutants of E. coli K-12 (tolA and tolB) which leak periplasmic proteins mimic excretion and release the haemolysin into the growth medium. Secretion of haemolysin into the periplasm is independent of perA (envZ) and in fact, mutants in perA (envZ) harbouring pPM431 show hyperproduction of periplasmic haemolysin. These results in conjunction with those for other V. cholerae extracellular proteins suggest that although E. coli K-12 can secrete these proteins into the periplasm, it lacks a specific excretion mechanism, present in V. cholerae, for the release of soluble proteins into the growth medium.  相似文献   

8.
A chimeric mammalian globular cytochrome b5 fused to Escherichia coli alkaline phosphatase signal sequence (SS) was used as a model probe to investigate the influence of substituting each one of the standard 20 amino acids at its N‐terminus on the Sec‐dependent export of the precursor to the periplasmic space of E. coli. Substituting the native Met+1 of the passenger protein flanking the SS with any one of the remaining 19 amino acids introduced significant changes in the export of cytochrome b5 without jamming the Sec‐dependent translocon. Acidic and hydrophilic residues proved to be the most efficient promoters of export. Small, nonbulky and basic residues yielded intermediate levels of the hemoprotein export. Replacement with a Cys+1 residue generated significant quantities of both monomeric and disulfide‐linked dimeric forms. However, bulky, aromatic and hydrophobic residues caused a significant decline in the rates of secretion. In expectation with their absences in the natural periplasmically secreted proteins, Pro and Ile‐tagged cytochrome b5 precursors failed to generate any detectable secreted recombinant products. Although Ala, amongst the native E. coli periplasmic proteins, is the preferred X+1 residue with an occurrence of 50% frequency, it proved half as effective in promoting export when inserted proximally to the SS of cytochrome b5. The mechanisms involved for these export variations are discussed. The findings will prove beneficial for high‐level generation of recombinant proteins by secretory means for pharmaceutical and related biotechnological applications.  相似文献   

9.
10.
The twin arginine translocation (Tat) pathway occurs naturally in E. coli and has the distinct ability to translocate folded proteins across the inner membrane of the cell. It has the potential to export commercially useful proteins that cannot be exported by the ubiquitous Sec pathway. To better understand the bioprocess potential of the Tat pathway, this article addresses the fermentation and downstream processing performances of E. coli strains with a wild‐type Tat system exporting the over‐expressed substrate protein FhuD. These were compared to strains cell‐engineered to over‐express the Tat pathway, since the native export capacity of the Tat pathway is low. This low capacity makes the pathway susceptible to saturation by over‐expressed substrate proteins, and can result in compromised cell integrity. However, there is concern in the literature that over‐expression of membrane proteins, like those of the Tat pathway, can impact negatively upon membrane integrity itself. Under controlled fermentation conditions E. coli cells with a wild‐type Tat pathway showed poor protein accumulation, reaching a periplasmic maximum of only 0.5 mg L?1 of growth medium. Cells over‐expressing the Tat pathway showed a 25% improvement in growth rate, avoided pathway saturation, and showed 40‐fold higher periplasmic accumulation of FhuD. Moreover, this was achieved whilst conserving the integrity of cells for downstream processing: experimentation comparing the robustness of cells to increasing levels of shear showed no detrimental effect from pathway over‐expression. Further experimentation on spheroplasts generated by the lysozyme/osmotic shock method—a scaleable way to release periplasmic protein—showed similar robustness between strains. A scale‐down mimic of continuous disk‐stack centrifugation predicted clarifications in excess of 90% for both intact cells and spheroplasts. Cells over‐expressing the Tat pathway performed comparably to cells with the wild‐type system. Overall, engineering E. coli cells to over‐express the Tat pathway allowed for greater periplasmic yields of FhuD at the fermentation scale without compromising downstream processing performance. Biotechnol. Bioeng. 2012; 109:983–991. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
The amino acid composition of halophilic enzymes is characterized by an abundant content of acidic amino acid, which confers to the halophilic enzymes extensive negative charges at neutral pH and high aqueous solubility. This negative charge prevents protein aggregation when denatured and thereby leads to highly efficient protein refolding. β-Lactamase from periplasmic space of moderate halophile (BLA), a typical halophilic enzyme, can be readily expressed as a native, active form in Escherichia coli cytoplasm. Similar to other halophilic enzymes, BLA is soluble upon denaturation by heat or urea treatments and, hence, can be efficiently refolded. Such high solubility and refolding efficiency make BLA a potential fusion partner for expression of aggregation-prone heterologous proteins to be expressed in E. coli. Here, we succeeded in the soluble expression of several “difficult-to-express” proteins as a BLA fusion protein and verified biological activities of human interleukin 1α and human neutrophil α-defensin, HNP-1.  相似文献   

12.
Escherichia coli mechanisms of copper homeostasis in a changing environment   总被引:7,自引:0,他引:7  
Escherichia coli is equipped with multiple systems to ensure safe copper handling under varying environmental conditions. The Cu(I)-translocating P-type ATPase CopA, the central component in copper homeostasis, is responsible for removing excess Cu(I) from the cytoplasm. The multi-copper oxidase CueO and the multi-component copper transport system CusCFBA appear to safeguard the periplasmic space from copper-induced toxicity. Some strains of E. coli can survive in copper-rich environments that would normally overwhelm the chromosomally encoded copper homeostatic systems. Such strains possess additional plasmid-encoded genes that confer copper resistance. The pco determinant encodes genes that detoxify copper in the periplasm, although the mechanism is still unknown. Genes involved in copper homeostasis are regulated by MerR-like activators responsive to cytoplasmic Cu(I) or two-component systems sensing periplasmic Cu(I). Pathways of copper uptake and intracellular copper handling are still not identified in E. coli.  相似文献   

13.
Protein folding in the periplasm of Escherichia coli   总被引:13,自引:0,他引:13  
With the discovery of molecular chaperones and the development of heterologous gene expression techniques, protein folding in bacteria has come into focus as a potentially limiting factor in expression and as a topic of interest in its own right. Many proteins of importance in biotechnology contain disulphide bonds, which form in the Escherichia coli periplasm, but most work on protein folding in the periplasm of E. coli is very recent and is often speculative. This MicroReview gives a short overview of the possible fates of a periplasmic protein from the moment it is translocated, as well as of the E. coli proteins involved in this process. After an introduction to the specific physiological situation in the periplasm of E. coli, we discuss the proteins that might help other proteins to obtain their correctly folded conformation — disulphide isomerase, rotamase, parts of the translocation apparatus and putative periplasmic chaperones — and briefly cover the guided assembly of multi-subunit structures. Finally, our MicroReview turns to the fate of misfolded proteins: degradation by periplasmic proteases and aggregation phenomena.  相似文献   

14.
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.  相似文献   

15.
Hen egg white lysozyme was expressed as a protein fusion with the OmpA signal sequence and an octapeptide linker in Escherichia coli. The expression yielded soluble and enzymatically active lysozyme. Lysozyme activity was detected in the periplasmic space, in the cytosol and in the insoluble cytosolic fraction of E. coli. The results indicate that the environmental conditions in both the cytosol and the periplasmic space of E. coli were sufficient for correct protein folding and disulphide bond formation of eukaryotic recombinant lysozyme. However, the expression of active enzyme in E. coli consequently led to bacterial cell lysis due to hydrolysis of the peptidoglucan. Correspondence to: B. Fischer  相似文献   

16.
Abstract

A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni2+-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.  相似文献   

17.
Resistance to penicillin in non-β-lactamase-producing strains of Neisseria gonorrhoeae (CMRNG strains) is mediated in part by the production of altered forms of penicillin-binding protein 2 (PBP 2) that have a decreased affinity for penicillin. The reduction in the affinity of PBP 2 is largely due to the insertion of an aspartic acid residue (Asp-345a) into the amino acid sequence of PBP 2. Truncated forms of N. gonorrhoeae PBP 2, which differed only by the insertion of Asp-345a, were constructed by placing the region of the penA genes encoding the periplasmic domain of PBP 2 (amino acids 42–581) into an ATG expression vector. When the recombinant PBP 2 molecules were over-expressed in Escherichia coli, insoluble PBP 2 inclusion bodies, which could be isolated by low-speed centrifugation of cell lysates, were formed. These insoluble aggregates were solubilized and the truncated PBP 2 polypeptides were partially purified by cation-exchange chromatography and gel filtration in the presence of denaturant prior to the refolding of the enzyme in vitro. After renaturation, gel filtration was used to separate monomeric soluble PBP 2 from improperly folded protein aggregates and other protein contaminants. A 4-liter culture of induced E. coli cells yielded 1.4 mg of soluble PBP 2 or PBP 2′ (PBP 2 containing the Asp-345a insertion), both of which were estimated to be 99% pure. The affinity of soluble PBP 2′ for [3H]penicillin G was decreased fourfold relative to that of soluble PBP 2, and their affinities were found to be identical to the affinities of the full-length PBP 2 enzymes that were previously determined in N. gonorrhoeae membranes. Furthermore, soluble PBP 2 displayed a rank order of affinity for several other β-lactam antibiotics that was consistent with the rank order of affinities previously reported for the native molecules. On the basis of these results, both of these soluble PBPs should be suitable for crystallization and X-ray crystallographic analysis.  相似文献   

18.
Cytoplasmic expression of complex eukaryotic proteins inEscherichia coli usually yields inactive protein preparations. In some cases, (part) of the biological activity can be recovered by rather inefficient denaturation-renaturation procedures. Recently, novel concepts have been developed for the expression of fully functional eukaryotic proteins inE. coli. Essential to the success of these procedures is the transport of such proteins across the inner membrane to the periplasmic space, allowing proper folding and the establishment of disulfide bonding. Subsequently, fully functional proteins can be exposed on the surface of filamentous (bacterio)phages, provided a system is employed that consists of a cloning vector (e.g. the phagemid pComb3, Barbas et al., 1991) that generates phage particles in the presence of a helper phage. The main advantage of surface display of recombinant proteins is to facilitate the screening of very large numbers of different molecules by simple selection methods (panning). In addition, periplasmic expression yields relatively large quantities (e.g. 1 mg l–1 of culture) soluble protein. In this review, the principle aspects of this novel expression system based on the phagemid pComb3 will be discussed. Two examples for functional periplasmic expression of human proteins inE. coli will be presented, namely i) the antigen-binding moiety (Fab fragment) of human immunoglobulins (IgGs) and ii) the human plasminogen activator inhibitor 1, an essential regulator of the plasminogen activation system. Finally, perspectives for the application of this system to express mutant proteins, fragments of proteins and peptides are indicated.Abbreviations ApR ampicillin resistance - cfu colony forming unit(s) - cpIII gene III-encoded coat protein of M13 - cpVIII gene VIII-encoded coat protein of M13 - ER endoplasmic reticulum - Fab fragment of Ig containing light chain, variable region and first constant region of heavy chain - Fd variable region and first constant region of the heavy chain - Fv fragment containing variable regions of heavy and light chain - Ig immunoglobulin - KmR kanamycin resistance - kb kilobase or 1000 basepairs - PAI-1 plasminogen activator inhibitor 1 - t-PA tissue-type plasminogen activator - u-PA urokinase-type plasminogen activator  相似文献   

19.
Copper cations play fundamental roles in biological systems, such as protein folding and stabilization, or enzymatic reactions. Although copper is essential to the cell, it can become cytotoxic if present in too high concentration. Organisms have therefore developed specific regulation mechanisms towards copper. This is the case of the Pco system present in the bacterium Caulobacter crescentus, which is composed of two proteins: a soluble periplasmic protein PcoA and an outer membrane protein PcoB. PcoA oxidizes Cu+ to Cu2+, whereas PcoB is thought to be an efflux pump for Cu2+. While the PcoA protein has already been studied, very little is known about the structure and function of PcoB. In the present work, PcoB has been overexpressed in high yield in E. coli strains and successfully refolded by the SDS-cosolvent method. Binding to divalent cations has also been studied using several spectroscopic techniques. In addition, a three-dimensional structure model of PcoB, experimentally supported by circular dichroism, has been constructed, showing a β-barrel conformation with a N-terminal disordered chain. This peculiar intrinsic disorder property has also been confirmed by various bioinformatic tools.  相似文献   

20.
Two types of proteins are discussed in their role of facilitating the transport of maltose and sn-glycerol-3-phosphate in E. coli. The first protein is the receptor for phage δ, known to be an outer membrane protein. By facilitating the diffusion of maltose and the higher maltodextrins through the outer membrane the effect of the δ receptor is to decrease the Km of the transport system without influencing the Vmax of substrate flux. The second protein is a periplasmic protein that is induced by growth on glycerol and is essential for transport of sn-glycerol-3-phosphate in whole cells but not in membrane vesicles. This protein has solely been identified by the use of a two-dimensional polyacrylamide gel electrophoresis of periplasmic proteins in wild-type and mutants defective in sn-glycerol-3-phosphate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号