首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Roles of abscisic acid (ABA) in water stress-induced oxidative stress were investigated in leaves of maize ( Zea mays L.) seedlings exposed to water stress induced by polyethylene glycol (PEG 6000). Treatment with PEG at &#109 0.7 MPa for 12 and 24 h led to a reduction in leaf relative water content (RWC) by 7.8 and 14.1%, respectively. Duration of the osmotic treatments is considered as mild and moderate water stress. The mild water stress caused significant increases in the generation of superoxide radical ( O 2 &#109 ) and hydrogen peroxide (H 2 O 2 ), the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) and the contents of ascorbate (ASC), reduced glutathione (GSH). The moderate water stress failed to further enhance the capacity of antioxidant defense systems, as compared to the mild water stress. The contents of catalytic Fe, which is critical for H 2 O 2 -dependent hydroxyl radical ( &#148 OH) production, and the oxidized forms of ascorbate and glutathione pools, dehydroascorbate (DHA) and oxidized glutathione (GSSG), markedly increased, a significant oxidative damage to lipids and proteins took place under the moderate water stress. Pretreatment with ABA caused an obvious reduction in the content of catalytic Fe and significant increases in the activities of antioxidant enzymes and the contents of non-enzymatic antioxidants, and then significantly reduced the contents of DHA and GSSG and the degrees of oxidative damage in leaves exposed to the moderate water stress. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA induced by water stress, reduced the enhancement in the capacity of antioxidant defense systems, and resulted in an increase in catalytic Fe, DHA and GSSG, and oxidative damage in the water-stressed leaves. These effects were completely prevented by addition of ABA, which raised the internal ABA content. Our data indicate that ABA plays an important role in water stress-induced antioxidant defense against oxidative stress.  相似文献   

2.
Jiang M  Zhang J 《Planta》2002,215(6):1022-1030
The roles of the plasma-membrane (PM) NADPH oxidase in abscisic acid (ABA)- and water stress-induced antioxidant defense were investigated in leaves of maize ( Zea mays L.) seedlings. Treatment by exogenous ABA (100 micro M ABA) or osmotic stress (-0.7 MPa induced by polyethylene glycol) significantly increased the activity of the PM NADPH oxidase, the production of leaf O(2)(-), the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), and the contents of antioxidant metabolites (ascorbate and reduced glutathione). Pretreatment with three different inhibitors of NADPH oxidase (diphenylene iodonium, imidazole and pyridine) or an inhibitor of ABA biosynthesis (tungstate) reduced the increase in the activity of the PM NADPH oxidase and the production of leaf O(2)(-), and the capacity of antioxidant defense systems mediated by ABA. The inhibitory effects above caused by tungstate were reversed by exogenous ABA. These data indicate that NADPH oxidase is involved in the ABA-induced production of active oxygen species (AOS), and our results depict a minimal chain of events initiated by water stress-induced ABA accumulation, which then triggers the production of AOS by membrane-bound NADPH oxidase, resulting in the induction of antioxidant defense systems against oxidative damage in plants.  相似文献   

3.
In this study we investigated the effect of insulin on neuronal viability and antioxidant defense mechanisms upon ascorbate/Fe2+-induced oxidative stress, using cultured cortical neurons. Insulin (0.1 and 10 microM) prevented the decrease in neuronal viability mediated by oxidative stress, decreasing both necrotic and apoptotic cell death. Moreover, insulin inhibited ascorbate/Fe2+-mediated lipid and protein oxidation, thus decreasing neuronal oxidative stress. Increased 4-hydroxynonenal (4-HNE) adducts on GLUT3 glucose transporters upon exposure to ascorbate/Fe2+ were also prevented by insulin, suggesting that this peptide can interfere with glucose metabolism. We further analyzed the influence of insulin on antioxidant defense mechanisms in the cortical neurons. Oxidative stress-induced decreases in intracellular uric acid and GSH/GSSG levels were largely prevented upon treatment with insulin. Inhibition of phosphatidylinositol-3-kinase (PI-3K) or mitogen-induced extracellular kinase (MEK) reversed the effect of insulin on uric acid and GSH/GSSG, suggesting the activation of insulin-mediated signaling pathways. Moreover, insulin stimulated glutathione reductase (GRed) and inhibited glutathione peroxidase (GPx) activities under oxidative stress conditions, further supporting that insulin neuroprotection was related to the modulation of the glutathione redox cycle. Thus, insulin may be useful in preventing oxidative stress-mediated injury that occurs in several neurodegenerative disorders.  相似文献   

4.
The interrelationship among water-stress-induced abscisic acid (ABA) accumulation, the generation of reactive oxygen species (ROS), and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) was investigated in leaves of detached maize (Zea mays L.) plants exposed to -0.7 MPa water stress induced by polyethylene glycol (PEG 6000). Time-course analyses of ABA content, the production of ROS, and the activities of antioxidant enzymes in water-stressed leaves showed that a significant increase in the content of ABA preceded that of ROS, which was followed by a marked increase in the activities of these antioxidant enzymes. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA, and also reduced the increased generation of ROS and the up-regulation of these antioxidant enzymes in water-stressed leaves. A mild oxidative stress induced by paraquat, which generates O(2)(-) and then H(2)O(2), resulted in a significant enhancement in the activities of antioxidant enzymes in non-water-stressed leaves. Pretreatment with some ROS scavengers, such as Tiron and dimethylthiourea (DMTU), and an inhibitor of NAD(P)H oxidase, diphenyleneiodonium (DPI), almost completely arrested the increase in ROS and the activities of these antioxidant enzymes induced by water stress or ABA treatment. These data suggest that water stress-induced ABA accumulation triggers the increased generation of ROS, which, in turn, leads to the up-regulation of the antioxidant defence system.  相似文献   

5.
研究了外源一氧化氮(NO)供体硝普钠(SNP)对NaCl胁迫下多裂骆驼蓬幼苗抗坏血酸(ASA)-谷胱甘肽(GSH)循环抗氧化系统及H2O2和丙二醛(MDA)含量的影响。结果表明,0.15mmol.L-1SNP能提高300mmol.L-1NaCl胁迫下多裂骆驼蓬幼苗叶片抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和谷胱甘肽转硫酶(GST)活性,增加还原型抗坏血酸(ASA)和谷胱甘肽(GSH)含量,降低脱氢抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量,提高ASA/DHA、GSH/GSSG比率,降低H2O2和MDA水平,对单脱氢抗坏血酸还原酶(MDAR)和脱氢抗坏血酸还原酶(DHAR)活性无显著影响。NO信号转导途径关键酶鸟苷酸环化酶(GC)抑制剂亚甲基蓝(MB)逆转了SNP对盐胁迫下APX、GR、GST活性和ASA、GSH、DHA,H2O2、MDA含量及ASA/DHA、GSH/GSSG比率的调节效应。由此表明,NO可能通过GC介导的cGMP信号转导参与ASA-GSH循环活性氧清除系统的调节,从而缓解盐胁迫诱导的氧化伤害。  相似文献   

6.
The responses of the antioxidant defense system in plant species to drought stress are still relatively unknown. In order to further understand how the system responds to drought stress, the leaves of Fargesia denudata seedlings were investigated. Antioxidant enzyme activities, antioxidant contents, hydrogen peroxide (H2O2), superoxide anion (O 2 ·? ) and MDA contents in the seedling leaves were measured under well-watered (WW), moderate drought-stressed (MD), and severe drought-stressed (SD) treatments. Although drought stress significantly increased H2O2 and O 2 ·? levels in F. denudata leaves, only weak lipid peroxidation was observed. This is attributed to the higher superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) activities in F. denudata leaves during the entire drought period. Reduced and oxidized ascorbate (AsA and DHA) contents were almost not affected by drought except that DHA under SD showed an obvious increase on day 30. Furthermore, reduced glutathione (GSH) content under drought stress significantly decreased, while oxidized glutathione (GSSG) markedly increased under SD on days 30 and 45 as well as under MD on day 30; as a result, the ratio GSH/GSSG declined considerably. These results indicated that GSH was involved in scavenging H2O2 and O 2 ·? under drought stress and it was more sensitive to drought stress in scavenging H2O2 and O 2 ·? than AsA. As a result, a highly efficient antioxidant defense system in drought-stressed F. denudate leaves operated mainly through the synergistic functioning of SOD, CAT, APX, MDHAR, DHAR, GR, and GSH against oxidative damage.  相似文献   

7.
In excess, iron can induce the production and accumulation of reactive oxygen species (ROS), causing oxidative stress. The objective of this work was to evaluate the impact of toxic concentrations of iron (Fe) on the antioxidative metabolism of young Eugenia uniflora plants. Forty-five-day-old plants grown in Hoagland nutrient solution, pH 5.0, were treated with three Fe concentrations, in the form of FeEDTA, during three periods of time. At the end of the treatment, the plants were harvested and relative growth rate, iron content, lipid peroxidation and enzymes and metabolites of the antioxidative metabolism were determined. Iron-treated plants showed higher iron contents, reduced relative growth rates and iron toxicity symptoms in both leaves and roots. There was an increase in lipid peroxidation with increasing Fe, only in the leaves. The enzymatic activities of superoxide dismutase (SOD) and glutathione reductase (GR) increased with increasing Fe concentration and treatment exposure time. The activities of catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APX) also increased with increasing Fe concentration but decreased with increasing treatment exposure time. Glutathione peroxidase activity (GPX) decreased with increasing Fe concentration and exposure time. The ascorbate (AA) and reduced glutathione (GSH) contents and the AA/DHA and GSH/GSSG ratios, in general, increased with increasing Fe concentration and treatment exposure time. The results indicate that under toxic levels of Fe, young E. uniflora plants suffer increased oxidative stress, which is ameliorated through changes in the activities of antioxidative enzymes and in the contents of the antioxidants AA and GSH.  相似文献   

8.
Abscisic acid (ABA) and salicylic acid (SA) were sprayed on leaves of wheat genotypes C 306 and Hira at 25 and 40 d after sowing under moderate water stress (−0.8 MPa) imposed by adding PEG-6000 in nutrient solution. ABA and SA increased the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in comparison to unsprayed control plants. Both ABA and SA treatments decreased the contents of hydrogen peroxide and thiobarbituric acid reactive substances, a measure of lipid peroxidation, compared to unsprayed plants. The beneficial effect of increase in antioxidant enzymes activity and decrease in oxidative stress was reflected in increase in chlorophyll and carotenoid contents, relative water content, membrane stability index, leaf area and total biomass over control plants. The lower concentrations of ABA (0.5 mM) and SA (1.0 mM) were generally more effective than higher concentrations.  相似文献   

9.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

10.
Infection of tomato leaves with the necrotrophic fungus Botrytis cinerea resulted in substantial changes in enzymatic and non-enzymatic components of the ascorbate-glutathione cycle as well as in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST), and l-galactono-gamma-lactone dehydrogenase (GLDH) activities. In the initial phase of the 5 d experiment CuZn SOD was the most rapidly induced isoform (up to 209% of control), whereas later on its activity increase was not concomitant with the constant total SOD enhancement. Starting from the second day B. cinerea infection diminished the mitochondrial antioxidant capacity by decreasing activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) as well as declining ascorbate and glutathione contents. This was accompanied by dehydroascorbate (DHA) and oxidized glutathione (GSSG) accumulation that resulted in ascorbate and glutathione redox ratios decreases. The strongest redox ratio decline of 29% for ascorbate and of 34% for glutathione was found on the 3rd and 2nd days, respectively. Glutathione reductase (GR) induction (185% of control 2 d after inoculation) was insufficient to overcome the decreased antioxidant potential of glutathione. Changes in the ascorbate pool size were closely related to the activity of l-galactono-gamma-lactone dehydrogenase (GLDH). The activities of two glutathione-dependent enzymes: GSH-Px and GST were increased from day 1 to day 4. These results demonstrated that in B. cinerea-tomato interaction mitochondria could be one of the main targets for infection-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号