首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bromus tectorum can transform ecosystems causing negative impacts on the ecological and economic values of sagebrush steppe of the western USA. Although our knowledge of the drivers of the regional distribution of B. tectorum has improved, we have yet to determine the relative importance of climate and local factors causing B. tectorum abundance and impact. To address this, we sampled 555 sites distributed geographically and ecologically throughout the sagebrush steppe. We recorded the canopy cover of B. tectorum, as well as local substrate and vegetation characteristics. Boosted regression tree modeling revealed that climate strongly limits the transformative ability of B. tectorum to a portion of the sagebrush steppe with dry summers (that is, July precipitation <10 mm and the driest annual quarter associated with a mean temperature >15°C) and low native grass canopy cover. This portion includes the Bonneville, Columbia, Lahontan, and lower Snake River basins. These areas are likely to require extreme efforts to reverse B. tectorum transformation. Our predictions, using future climate conditions, suggest that the transformative ability of B. tectorum may not expand geographically and could remain within the same climatically suitable basins. We found B. tectorum in locally disturbed areas within or adjacent to all of our sample sites, but not necessarily within sagebrush steppe vegetation. Conversion of the sagebrush steppe by B. tectorum, therefore, is more likely to occur outside the confines of its current climatically optimal region because of site-specific disturbances, including invasive species control efforts and sagebrush steppe mismanagement, rather than climate change.  相似文献   

2.
We analyzed the global genetic variation pattern of Capsella bursa‐pastoris (Brassicaceae) as expressed in allozymic (within‐locus) diversity and isozymic (between‐locus) diversity. Results are based on a global sampling of more than 20,000 C. bursa‐pastoris individuals randomly taken from 1,469 natural provenances in the native and introduced range, covering a broad spectrum of the species’ geographic distribution. We evaluated data for population genetic parameters and F‐statistics, and Mantel tests and AMOVA were performed. Geographical distribution patterns of alleles and multilocus genotypes are shown in maps and tables. Genetic diversity of introduced populations is only moderately reduced in comparison with native populations. Global population structure was analyzed with structure, and the obtained cluster affiliation was tested independently with classification approaches and macroclimatic data using species distribution modeling. Analyses revealed two main clusters: one distributed predominantly in warm arid to semiarid climate regions and the other predominantly in more temperate humid to semihumid climate regions. We observed admixture between the two lineages predominantly in regions with intermediate humidity in both the native and non‐native ranges. The genetically derived clusters are strongly supported in macroclimatic data space. The worldwide distribution patterns of genetic variation in the range of C. bursa‐pastoris can be explained by intensive intra‐ and intercontinental migration, but environmental filtering due to climate preadaption seems also involved. Multiple independent introductions of genotypes from different source regions are obvious. “Endemic” genotypes might be the outcome of admixture or of de novo mutation. We conclude that today's successfully established Capsella genotypes were preadapted and found matching niche conditions in the colonized range parts.  相似文献   

3.
Invasive plants are thought to be especially capable of range shifts or expansion in response to climate change due to high dispersal and colonization abilities. Although highly invasive throughout the Intermountain West, the presence and impact of the grass Bromus tectorum has been limited at higher elevations in the eastern Sierra Nevada, potentially due to extreme wintertime conditions. However, climate models project an upward elevational shift of climate regimes in the Sierra Nevada that could favor B. tectorum expansion. This research specifically examined the effects of experimental snow depth manipulations and interannual climate variability over 5 years on B. tectorum populations at high elevation (2,175 m). Experimentally-increased snow depth had an effect on phenology and biomass, but no effect on individual fecundity. Instead an experimentally-increased snowpack inhibited population growth in 1 year by reducing seedling emergence and early survival. A similar negative effect of increased snow was observed 2 years later. However, a strong negative effect on B. tectorum was also associated with a naturally low-snow winter, when seedling emergence was reduced by 86%. Across 5 years, winters with greater snow cover and a slower accumulation of degree-days coincided with higher B. tectorum seedling density and population growth. Thus, we observed negative effects associated with both experimentally-increased and naturally-decreased snowpacks. It is likely that the effect of snow at high elevation is nonlinear and differs from lower elevations where wintertime germination can be favorable. Additionally, we observed a doubling of population size in 1 year, which is alarming at this elevation.  相似文献   

4.
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green‐up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site‐specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau.  相似文献   

5.
Elevated CO2 and warming may alter terrestrial ecosystems by promoting invasive plants with strong community and ecosystem impacts. Invasive plant responses to elevated CO2 and warming are difficult to predict, however, because of the many mechanisms involved, including modification of phenology, physiology, and cycling of nitrogen and water. Understanding the relative and interactive importance of these processes requires multifactor experiments under realistic field conditions. Here, we test how free‐air CO2 enrichment (to 600 ppmv) and infrared warming (+1.5 °C day/3 °C night) influence a functionally and phenologically distinct invasive plant in semi‐arid mixed‐grass prairie. Bromus tectorum (cheatgrass), a fast‐growing Eurasian winter annual grass, increases fire frequency and reduces biological diversity across millions of hectares in western North America. Across 2 years, we found that warming more than tripled B. tectorum biomass and seed production, due to a combination of increased recruitment and increased growth. These results were observed with and without competition from native species, under wet and dry conditions (corresponding with tenfold differences in B. tectorum biomass), and despite the fact that warming reduced soil water. In contrast, elevated CO2 had little effect on B. tectorum invasion or soil water, while reducing soil and plant nitrogen (N). We conclude that (1) warming may expand B. tectorum's phenological niche, allowing it to more successfully colonize the extensive, invasion‐resistant northern mixed‐grass prairie, and (2) in ecosystems where elevated CO2 decreases N availability, CO2 may have limited effects on B. tectorum and other nitrophilic invasive species.  相似文献   

6.
Climate oscillations have left a significant impact on the patterns of genetic diversity observed in numerous taxa. In this study, we examine the effect of Quaternary climate instability on population genetic variability of a bumble bee pollinator species, Bombus huntii in western North America. Pleistocene and contemporary B. huntii habitat suitability (HS) was estimated with an environmental niche model (ENM) by associating 1,035 locality records with 10 bioclimatic variables. To estimate genetic variability, we genotyped 380 individuals from 33 localities at 13 microsatellite loci. Bayesian inference was used to examine population structure with and without a priori specification of geographic locality. We compared isolation by distance (IBD) and isolation by resistance (IBR) models to examine population differentiation within and among the Bayesian inferred genetic clusters. Furthermore, we tested for the effect of environmental niche stability (ENS) on population genetic diversity with linear regression. As predicted, high‐latitude B. huntii habitats exhibit low ENS when compared to low‐latitude habitats. Two major genetic clusters of B. huntii inhabit western North America: (a) a north genetic cluster predominantly distributed north of 28°N and (b) a south genetic cluster distributed south of 28°N. In the south genetic cluser, both IBD and IBR models are significant. However, in the north genetic cluster, IBD is significant but not IBR. Furthermore, the IBR models suggest that low‐latitude montane populations are surrounded by habitat with low HS, possibly limiting dispersal, and ultimately gene flow between populations. Finally, we detected high genetic diversity across populations in regions that have been climatically unstable since the last glacial maximum (LGM), and low genetic diversity across populations in regions that have been climatically stable since the LGM. Understanding how species have responded to climate change has the potential to inform management and conservation decisions of both ecological and economic concerns.  相似文献   

7.
Andean orogenesis has driven the development of very high plant diversity in the Neotropics through its impact on landscape evolution and climate. The analysis of the intraspecific patterns of genetic structure in plants would permit inferring the effects of Andean uplift on the evolution and diversification of Neotropical flora. In this study, using microsatellite markers and Bayesian clustering analyses, we report the presence of four genetic clusters for the palm Oenocarpus bataua var. bataua which are located within four biogeographic regions in northwestern South America: (a) Chocó rain forest, (b) Amotape‐Huancabamba Zone, (c) northwestern Amazonian rain forest, and (d) southwestern Amazonian rain forest. We hypothesize that these clusters developed following three genetic diversification events mainly promoted by Andean orogenic events. Additionally, the distinct current climate dynamics among northwestern and southwestern Amazonia may maintain the genetic diversification detected in the western Amazon basin. Genetic exchange was identified between the clusters, including across the Andes region, discarding the possibility of any cluster to diversify as a distinct intraspecific variety. We identified a hot spot of genetic diversity in the northern Peruvian Amazon around the locality of Iquitos. We also detected a decrease in diversity with distance from this area in westward and southward direction within the Amazon basin and the eastern Andean foothills. Additionally, we confirmed the existence and divergence of O. bataua var. bataua from var. oligocarpus in northern South America, possibly expanding the distributional range of the latter variety beyond eastern Venezuela, to the central and eastern Andean cordilleras of Colombia. Based on our results, we suggest that Andean orogenesis is the main driver of genetic structuring and diversification in O. bataua within northwestern South America.  相似文献   

8.
In drylands of southeastern Utah, USA, the invasive exotic grass Bromus tectorum L. occurs in distinct spatial patterns suggesting soil control of ecosystem susceptibility to invasion. To improve our understanding of these patterns, we examined performance of B. tectorum in relation to additions of water, KCl, MgO, and CaO at seventeen 1600 m2 sites distributed across a calcareous soil gradient in Canyonlands National Park. Water additions resulted in a 57% increase in B. tectorum establishment. Fall establishment was significantly correlated with silt and clay content in wet plots but not in dry plots, suggesting that texture effects on B. tectorum establishment patterns may be greater in wet years than in dry years. Applications of MgO resulted in a 49% decrease in B. tectorum establishment, although MgO had no effect on whole-plot biomass at the end of the growing season. B. tectorum–soil relations were strongest during winter (December–March) when relative growth rates were negatively related to soil acid-neutralizing potential, sand and CaCO3 content, and a measure of bioavailable Mg; and positively related to silt and clay content, total N, measures of bioavailable Mn, P, and K, and a measure of magnetite indicating distributional patterns of eolian dust. As soils were persistently moist during this period, we attribute strong B. tectorum–soil patterns in winter to effects of low temperature on diffusion, microbial activity, and/or production of root exudates important for nutrient mobilization and uptake. In spring, there was a reversal in B. tectorum–soil relations such that loamy soils with higher B. tectorum densities were unfavorable for growth relative to sandy soils with higher warm-season water potentials. We conclude that resource limitations for B. tectorum in this study area shift seasonally, from water limitation of fall establishment, to nutrient limitation of winter growth, and back to water limitation of spring growth. Because study sites generally were arrayed along a hillslope gradient with downslope trends in soil vtexture and nutrient content, close B. tectorum–soil relations documented in this study indicate that a geomorphic framework is useful for understanding and predicting B. tectorum invasion patterns in dryland ecosystems of this region.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Section Editor: T. KalaposThe U.S. Government’s right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged  相似文献   

9.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

10.
Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within‐species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population‐level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 GST) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean GST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species.  相似文献   

11.
Amazonian understory antbirds are thought to be relatively sedentary and to have limited dispersal ability; they avoid crossing forest gaps, and even narrow roads through a forest may limit their territories. However, most evidence for sedentariness in antbirds comes from field observations and plot‐based recapture of adult individuals, which do not provide evidence for lack of genetic dispersal, as this often occurs through juveniles. In this study, we used microsatellite markers and mitochondrial control‐region sequences to investigate contemporary and infer historical patterns of genetic diversity and structure of the Rufous‐throated Antbird (Gymnopithys rufigula) within and between two large reserves in central Amazonia. Analyses based on microsatellites suggested two genetically distinct populations and asymmetrical gene flow between them. Within a population, we found a lack of genetic spatial autocorrelation, suggesting that genotypes are randomly distributed and that G. rufigula may disperse longer distances than expected for antbirds. Analyses based on mitochondrial sequences did not recover two clear genetic clusters corresponding to the two reserves and indicated the whole population of the Rufous‐throated Antbird in the region has been expanding over the last 50,000 years. Historical migration rates were low and symmetrical between the two reserves, but we found evidence for a recent unilateral increase in gene flow. Recent differentiation between individuals of the two reserves and a unilateral increase in gene flow suggest that recent urban expansion and habitat loss may be driving changes and threatening populations of Rufous‐throated Antbird in central Amazonia. As ecological traits and behavioral characteristics affect patterns of gene flow, comparative studies of other species with different behavior and ecological requirements will be necessary to better understand patterns of genetic dispersal and effects of urban expansion on Amazonian understory antbirds.  相似文献   

12.
The North Sea–Baltic Sea transition zone constitutes a boundary area for the kelp species Saccharina latissima due to a strong salinity gradient operating in the area. Furthermore, the existence of S. latissima there, along Danish waters, is fairly patchy as hard bottom is scarce. In this study, patterns of genetic diversity of S. latissima populations were evaluated along the salinity gradient area of Danish waters (here designated brackish) and were compared to reference sites (here designated marine) outside the gradient area, using microsatellite markers. The results showed that the S. latissima populations were structured into two clusters corresponding to brackish versus marine sites, and that gene flow was reduced both between clusters and between populations within clusters. In addition, results provided empirical evidence that marginal populations of S. latissima in the salinity gradient area exhibited a distinct genetic structure when compared to marine ones. Brackish populations were less diverse, more related, and showed increased differentiation over distance compared to marine populations. The isolation of the brackish S. latissima populations within the salinity gradient area of Danish waters in conjunction with their general low genetic diversity makes these populations vulnerable to ongoing environmental and climate change, predicted to result in declining salinity in the Baltic Sea area that may alter the future distribution and performance of S. latissima in the area.  相似文献   

13.
To investigate genetic diversity and the population structure of the European moose (Alces alces), we analyzed 14 microsatellite loci for 694 samples collected across 16 localities. The highest genetic diversity was detected in Belarus and Russia and the lowest was found in Scandinavia. Two major genetic clusters existed, Scandinavian and continental, and some further spatial structure was detected. There was high concordance between the spatial distribution of microsatellite clusters analyzed in the present study and previously recognized mitochondrial DNA clades of moose. The split of genetic lineages calculated using approximate Bayesian computation (ABC) occurred at the beginning of the Last Glacial Maximum: approximately 29 000 and 28 000 years BP. A range‐wide bottleneck detected by ABC took place 1800–1200 years BP, although a more recent decline in moose numbers was also documented in the 18th to early 20th Century. Genetic differentiation in European moose increased with geographical distance, and the Baltic Sea appeared to be a barrier to gene flow. We conclude that isolation in different glacial refugia, postglacial colonization, and declines of range and numbers in Holocene shaped the present pattern of genetic diversity of European moose. Based on genetic divergence and a lack of apparent gene flow, the contemporary Scandinavian and continental subpopulations should be treated as separate management units.  相似文献   

14.
Allelic variation in seedlings from 60 North American populations of the alien annual grass Bromus tectorum was determined at 25 loci using starch gel electrophoresis. Populations were collected from four regions; east of the Rocky Mountains, Nevada and California, the Intermountain West, and British Columbia. Compared to other diploid seed plants, genetic variation within these populations of B. tectorum is low: 4.60% of loci are polymorphic per population, with an average of 1.05 alleles per locus and a mean expected heterozygosity of 0.012. Although 2,141 individuals were analyzed, no heterozygous individuals were detected, and consequently, mean observed heterozygosity is 0.000. Extensive deviations from Hardy-Weinberg expectations were observed at every polymorphic locus due to heterozygote deficiencies. The mean genetic identity (Nei's I) between population pairs was 0.980 and indicates a high level of overall genetic similarity among populations. The among-population component of the total gene diversity is high (GST = 0.478), indicating substantial genetic differentiation among populations. These results are consistent with previous reports for highly self-pollinating plants of low genetic variation and substantial genetic differentiation among populations. Despite the lack of genetic variation as measured by enzyme electrophoresis, this weedy grass has become exceedingly abundant in a diverse array of arid environments throughout much of western North America, perhaps due to phenotypic plasticity.  相似文献   

15.
Plant spatial patterns critically influence community dynamics, including plant interactions, resource distribution, and community invasibility. Research suggests that resistance of western US plant communities to further invasion by the exotic annual grass Bromus tectorum may be linked to the positions of, and spacing between, perennial plants. In particular, gaps between aggregated clusters of perennial plants may facilitate B. tectorum invasion by providing safe sites for seed germination and establishment. We tested the effects of random, regular, and aggregated bunchgrass patterns, manipulated at both community (plot) and neighborhood scales, on B. tectorum biomass and spikelet production after experimental seed addition. We found strong evidence of treatment effects on both biomass and spikelets, which varied between treatments by approximately 2.5-fold. Mean biomass and spikelet counts were lowest in plots in which bunchgrasses were aggregated at both community and neighborhood scales, likely due to the increased competition. Although not statistically distinguishable from most other treatments, B. tectorum biomass and spikelet counts were highest in plots with bunchgrass patterns that were random at the community scale and aggregated at the neighborhood scale. These plots were characterized by relatively large gaps between bunchgrass clusters, suggesting that B. tectorum may exploit gaps between aggregated perennial plants. Our results support the emerging hypothesis that community resistance to B. tectorum invasion could be increased through manipulation of perennial vegetation to reduce basal gap size and connectivity.  相似文献   

16.
The field of population genetics is rapidly moving into population genomics as the quantity of data generated by high‐throughput sequencing platforms increases. In this study, we used restriction‐site‐associated DNA sequencing (RADSeq) to recover genomewide genotypes from 70 white‐beaked (Lagenorhynchus albirostris) and 43 Atlantic white‐sided dolphins (L. acutus) gathered throughout their north‐east Atlantic distribution range. Both species are at a high risk of being negatively affected by climate change. Here, we provide a resource of 38 240 RAD‐tags and 52 981 nuclear SNPs shared between both species. We have estimated overall higher levels of nucleotide diversity in white‐sided (π = 0.0492 ± 0.0006%) than in white‐beaked dolphins (π = 0.0300 ± 0.0004%). White‐sided dolphins sampled in the Faroe Islands, belonging to two pods (N = 7 and N = 11), showed similar levels of diversity (π = 0.0317 ± 0.0007% and 0.0267 ± 0.0006%, respectively) compared to unrelated individuals of the same species sampled elsewhere (e.g. π = 0.0285 ± 0.0007% for 11 Scottish individuals). No evidence of higher levels of kinship within pods can be derived from our analyses. When identifying the most likely number of genetic clusters among our sample set, we obtained an estimate of two to four clusters, corresponding to both species and possibly, two further clusters within each species. A higher diversity and lower population structuring was encountered in white‐sided dolphins from the north‐east Atlantic, in line with their preference for pelagic waters, as opposed to white‐beaked dolphins that have a more patchy distribution, mainly across continental shelves.  相似文献   

17.
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

18.
Buffalograss [Buchloe dactyloides (Nutt.) Englem] germplasm has a broad resource of genetic diversity that can be used for turfgrass, forage and conservation. Buffalograss is the only native grass that is presently used as a turfgrass in the Great Plains region of North America. Its low growth habit, drought tolerance and reduced requirement for fertilizer and pesticides contribute to interest in its use. The objectives of this study were to use sequence-related amplified polymorphism (SRAP) markers in the evaluation of genetic diversity and phenetic relationships in a diverse collection of 53 buffalograss germplasms, and to identify buffalograss ploidy levels using flow cytometry. Based on their DNA contents, buffalograss genotypes were grouped into four sets, corresponding to their ploidy levels. Thirty-four SRAP primer combinations were used. This is the first report of the detection of differentiating diploid, tetraploid, pentaploid and hexaploid buffalograss genotypes, representing diverse locations of origin, using SRAP markers. Cluster analysis by the unweighted pair-group method with arithmetic averages based on genetic similarity matrices indicated that there were eight clusters. The coefficients of genetic distance among the genotypes ranged from 0.33 up to 0.99 and averaged D=0.66. The genetic diversity estimate, He, averaged 0.35. These results demonstrated that genotypes with potential traits for turfgrass improvement could readily be distinguished, based on SRAP. The use of PCR-based technologies such as SRAP is an effective tool for estimating genetic diversity, identifying unique genotypes as new sources of alleles for enhancing turf characteristics, and for analyzing the evolutionary and historical development of cultivars at the genomic level in a buffalograss breeding program.Communicated by B. Friebe  相似文献   

19.
Establishing corridors of connecting habitat has become a mainstay conservation strategy to maintain gene flow and facilitate climate‐driven range shifts. Yet, little attention has been given to ascertaining the extent to which corridors will benefit philopatric species, which might exhibit localized adaptation. Measures of genetic connectivity and adaptive genetic variation across species’ ranges can help fill this knowledge gap. Here, we characterized the spatial genetic structure of Cunningham's skink (Egernia cunninghami), a philopatric species distributed along Australia's Great Dividing Range, and assessed evidence of localized adaptation. Analysis of 4,274 SNPs from 94 individuals sampled at four localities spanning 500 km and 4° of latitude revealed strong genetic structuring at neutral loci (mean FST ± SD = 0.603 ± 0.237) among the localities. Putatively neutral SNPs and those under divergent selection yielded contrasting spatial patterns, with the latter identifying two genetically distinct clusters. Given low genetic connectivity of the four localities, we suggest that the natural movement rate of this species is insufficient to keep pace with spatial shifts to its climate envelope, irrespective of habitat availability. In addition, our finding of localized adaptation highlights the risk of outbreeding depression should the translocation of individuals be adopted as a conservation management strategy.  相似文献   

20.
Human commensal species such as rodent pests are often widely distributed across cities and threaten both infrastructure and public health. Spatially explicit population genomic methods provide insights into movements for cryptic pests that drive evolutionary connectivity across multiple spatial scales. We examined spatial patterns of neutral genomewide variation in brown rats (Rattus norvegicus) across Manhattan, New York City (NYC), using 262 samples and 61,401 SNPs to understand (i) relatedness among nearby individuals and the extent of spatial genetic structure in a discrete urban landscape; (ii) the geographic origin of NYC rats, using a large, previously published data set of global rat genotypes; and (iii) heterogeneity in gene flow across the city, particularly deviations from isolation by distance. We found that rats separated by ≤200 m exhibit strong spatial autocorrelation (r = .3, p = .001) and the effects of localized genetic drift extend to a range of 1,400 m. Across Manhattan, rats exhibited a homogeneous population origin from rats that likely invaded from Great Britain. While traditional approaches identified a single evolutionary cluster with clinal structure across Manhattan, recently developed methods (e.g., fineSTRUCTURE, sPCA, EEMS) provided evidence of reduced dispersal across the island's less residential Midtown region resulting in fine‐scale genetic structuring (FST = 0.01) and two evolutionary clusters (Uptown and Downtown Manhattan). Thus, while some urban populations of human commensals may appear to be continuously distributed, landscape heterogeneity within cities can drive differences in habitat quality and dispersal, with implications for the spatial distribution of genomic variation, population management and the study of widely distributed pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号