首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The Role of Cell Hydrophobicity in the Formation of Aerobic Granules   总被引:12,自引:0,他引:12  
Liu Y  Yang SF  Liu QS  Tay JH 《Current microbiology》2003,46(4):0270-0274
Cell hydrophobicity is an important affinity force in cell self-immobilization and attachment processes. The role of cell hydrophobicity in the formation of aerobic granules has not been clear. Therefore, two series of experiments were conducted to investigate the role of cell hydrophobicity in the formation of aerobic heterotrophic and nitrifying granules in sequencing batch reactors, while the effects of shear strength, hydraulic selection pressure, and organic loading rate on the cell hydrophobicity were also studied. Results showed that the formations of heterotrophic and nitrifying granules were associated very closely with the cell hydrophobicity. The hydrophobicity of granular sludge was nearly twofold higher than that of conventional bioflocs. A high shear force or hydraulic selection pressure imposed on microorganisms resulted in a significant increase in the cell hydrophobicity, while the cell hydrophobicity seemed not to be sensitive to the changes in the organic loading rates in the range studied. In conclusion, the cell hydrophobicity could induce and further strengthen cell–cell interaction, and might be a main triggering force to initiate the granulation of heterotrophic and nitrifying bacteria. Received: 21 May 2002 / Accepted: 21 June 2002  相似文献   

2.
AIMS: This paper attempts to investigate the role of cellular polysaccharides in the formation and stability of aerobic granules. METHODS AND RESULTS: Three column sequential aerobic sludge blanket reactors (R1, R2 and R3) were operated at a superficial air upflow velocity of 0.3 cm s(-1), 1.2 cm s(-1) and 2.4 cm s(-1), respectively. Aerobic granules appeared at cycle 42 in R2 and R3 with a mean size of 0.37 mm in R2 and 0.35 mm in R3, however, aerobic granulation was not observed in R1. After the formation of aerobic granules, the sludge volume index (SVI) decreased to 55 ml g(-1) in R2 and 46 ml g(-1) in R3. Aerobic granulation was concurrent with a sharp increase of cellular polysaccharides normalized to cellular proteins, which increased from 5.7 to 13.0 mg per mg proteins in R2, and 7.5-13.9 mg per mg protein in R3. The content of polysaccharides in aerobic granules was 2-3 times higher than that in the bioflocci cultivated in R1. The disappearance of aerobic granules in R2 was tightly coupled to a drop in cellular polysaccharides. After the reappearance of bioflocci in R2, the content of cellular polysaccharides were found to be restored to the level observed in R1. CONCLUSION: It appears that the production of cellular polysaccharides could be stimulated by hydrodynamic shear force and contributes to the formation and stability of aerobic granules. SIGNIFICANCE AND IMPACT OF THE STUDY: It is expected that this study would provide useful information for better understanding the mechanisms of aerobic granulation.  相似文献   

3.
Two SBR reactors were set up to investigate the feasibility of aerobic granulation under the combined selection pressures of hydraulic shear force and substrate loading. Aerobic granulation was studied at superficial upflow air velocity of 3.2 and 2.4 cm/s under an organic loading rate (OLR) range of 6.0-15.0 kg COD/m3d. Good reactor performance and well granule characteristics were achieved in a wide OLR range from 6.0 high up to 15.0 kg COD/m3d at 3.2 cm/s. While under the velocity of 2.4 cm/s, stable operation was limited in the OLR range of 6.0-9.0 kg COD/m3d and failed to operate with granule deterioration under further higher OLRs. The optimal combination of hydrodynamic shear force and loading selection pressure was demonstrated to be an important factor that influence aerobic granulation and govern the granule characteristics and reactor performance.  相似文献   

4.
The cultivation of stable aerobic granules as well as granular structure and stability in sequencing batch reactors under different shear force were investigated in this study. Four column sequencing batch reactors (R1–R4) were operated under various shear force, in terms of superficial upflow air velocity of 0.8, 1.6, 2.4, and 3.2 cm s−1, respectively. Aerobic granules were formed in all reactors in the experiment. It was found that the magnitude of shear force has an important impact on the granule stability. At shear force of 2.4 and 3.2 cm s−1, granules can maintain a robust structure and have the potential of long-term operation. Granules developed in low shear force (R1, 0.8 cm s−1 and R2, 1.6 cm s−1) deteriorated to large-sized filamentous granules with irregular shape, loose structure and resulted in poor performance and operation instability. Granules cultivated under high shear force (R3, 2.4 cm s−1 and R4, 3.2 cm s−1) stabilized to clear outer morphology, dense and compact structure, and with good performance in 120 days operation. Fractal dimension (Df) represents the internal structure of granules and can be used as an important indicator to describe the structure and stability of granules. Due to the combined effects of shear force and growth force, the mature granules developed in R3 and R4 also displayed certain differences in granular structure and characteristics.  相似文献   

5.
Aerobic granules were firstly developed in a completely mixed tank reactor (CMTR) by seeding micro-mycelial pellets (MMPs) of Phanerochaete chrysosporium. During phenol wastewater treatment, sludge granulation rate reached 67 % after 15-day operation. The granules in CMTR are different from aerobic granules described in literature in morphology, and a majority of them are rod-shaped or rodlike sludge besides spherical granules. The polymorphic granules, having no essential difference with aerobic granules previously reported, achieve advantages over conventional activated sludge in settling ability, biomass concentration, density, integrity coefficient and removal ability to phenol wastewater. The optimized parameters for sludge granulation in CMTR including temperature, inoculum quantity, rotary speed and superficial air upflow velocity are 30 °C, 5–7 g/l, 150 rpm, and 0.5 cm/s, respectively. Analysis on sludge granulation mechanism indicates that MMPs not only result in the formation of aerobic granules containing MMPs as nuclei, but also induce the formation of biogranules which do not have MMP at their cores. The work challenges the general belief that the homogenous circular flow pattern of microbial aggregates is necessary for aerobic sludge granulation.  相似文献   

6.
AIMS: This paper attempts to provide visual evidence of how aerobic granulation evolves in sequential aerobic sludge blanket reactors. METHODS AND RESULTS: A series of experiments were conducted in two column-type sequential aerobic sludge reactors fed with glucose and acetate as sole carbon source, respectively. The evolution of aerobic granulation was monitored using image analysis and optical and scanning electron microscopy. The results indicated that the formation of aerobic granules was a gradual process from seed sludge to compact aggregates, further to granular sludge and finally to mature granules with the sequential operation proceeding. Glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density and microbial activity. However, the microbial diversity of the granules was associated with the carbon source supplied. In this work, an important aerobic starvation phase was identified during sequential operation cycles. It was found that periodical aerobic starvation was an effective trigger for microbial aggregation in the reactor and further strengthened cell-cell interaction to form dense aggregates, which was an essential step of granulation. The periodical starvation-induced aggregates would finally be shaped to granules by hydrodynamic shear and flow. CONCLUSION: Aerobic granules can be formed within 3 weeks in the systems. The periodical starvation and hydrodynamic conditions would play a crucial role in the granulation process. SIGNIFICANCE AND IMPACT OF THE STUDY: Aerobic granules have excellent physical characteristics as compared with conventional activated sludge flocs. This research could be helpful for the development of an aerobic granule-based novel type of reactor for handling high strength organic wastewater.  相似文献   

7.
以序批式气提生物反应器(SABR)为平台,研究了苯胺和氯苯胺类有毒有机废水处理过程好氧污泥颗粒化。结果表明,通过缩短污泥沉降时间、逐步提升目标污染物进水负荷,反应器连续运行3个月,最终在污泥沉降时间5min、COD负荷1.0~3.6kg/(m3.d)、苯胺和氯苯胺负荷1kg/(m3.d)条件下实现污泥颗粒化,COD、苯胺和氯苯胺去除率分别稳定在90%、99.9%以上;获得的成熟好氧颗粒粒径在0.45~2.5mm,SOUR稳定在150mgDO/(gVSS·h)以上,颗粒污泥EPS中PN含量为28.0±1.9mg/gVSS,PN/PS比值为6.5mg/mg,苯胺类比降解速率达0.18g/(g·d);应用PCR-DGGE分子指纹图谱技术分析了稳定运行的颗粒化反应器内好氧污泥微生物种群结构,结果表明好氧颗粒内主要细菌分属β-Proteobacteria、γ-Proteobacteria及Flavobacteria等类群,优势菌为Pseudomonas sp.、Flavobacterium sp.;与已获得的降解氯苯胺好氧颗粒相比,苯胺存在下培养获得的好氧颗粒污泥微生物菌群结构更为丰富。  相似文献   

8.
This study investigated the feasibility of improving the stability of aerobic granules through selecting slow-growing nitrifying bacteria. For this purpose, four sequencing batch reactors were operated at different substrate N/COD ratios ranging from 5/100 to 30/100. Results showed that aerobic granules formed in all four reactors, and aerobic granulation was a gradual process evolving from the dispersed seed sludge to mature and stable granules, and the whole granulation process could be divided into three phases, i.e. acclimation phase, granulation followed by granule maturation. The observed growth rate and mean size of mature aerobic granules were found to decrease as the substrate N/COD ratio was increased, while nitrifying population was enriched markedly in aerobic granules developed at high substrate N/COD ratios. The enriched nitrifying population in aerobic granules was responsible for the observed low growth rate of aerobic granules. It seems certain that the substrate N/COD ratio is an important factor in selecting nitrifying bacteria in aerobic granules. Aerobic granules with low growth rates showed strong structure and good settleability in terms of specific gravity, SVI and cell hydrophobicity that further lead to high stability as compared to those having high growth rates. This study demonstrated that the selection of slow-growing nitrifying bacteria through controlling substrate N/COD ratio would be a useful strategy for improving the stability of aerobic granules.  相似文献   

9.
Aerobic granular sludge sequencing batch reactors (SBR) are a promising technology for treating wastewater. Increasing evidence suggests that aerobic granulation in SBRs is driven by selection pressures exerted on microorganisms. Three major selection pressures have been identified as follows: settling time, volume exchange ratio and discharge time. This review demonstrates that these three major selection pressures can all be unified to one, the minimal settling velocity of bio-particles, that determines aerobic granulation in SBRs. The unified selection pressure theory is a useful guide for manipulating and optimizing the formation and characteristics of aerobic granules in SBRs. Furthermore, the unified theory provides a single engineering basis for scale up of aerobic granular sludge SBRs.  相似文献   

10.
Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号