首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
Although various tissue macrophages possess high glucose-6-phosphate dehydrogenase (G6PD) activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells) has not been determined. We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide) method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.  相似文献   

2.
The evidence that Kupffer cells are capable of controlling metastatic growth in the liver in vivo is largely circumstantial. The best approach when studying natural cytotoxicity activities of Kupffer cells is to investigate the effect of Kupffer cell elimination on tumour growth. Until now it has not been possible to eliminate Kupffer cells without affecting other cell populations. We have recently developed a new method to eliminate Kupffer cells selectively: intravenous injection of liposome-encapsulated (dichloromethylene)bisphosphonate (Cl2MDP-liposomes) leads to effective elimination of all Kypffer cells, without affecting non-phagocytic cells. Wag/Rij rats were injected with Cl2MDP-liposomes. After 48 h, rats were inoculated with syngeneic CC531 colon carcinoma cells by injection in the portal system. The results show a strongly enhanced tumour growth in the liver of the Cl2MDP-liposometreated rats. In these animals, livers were almost completely replaced by tumour and had increased in weight, whereas in the control groups only a few (four to eight) small (1-mm) tumour nodules were found. These data show that selective elimination of Kupffer cells results in enhanced tumour growth in the liver, implying that Kupffer cells play a crucial role in controlling tumour growth in the liver.  相似文献   

3.
Kupffer cells are resident macrophages in the liver and play a central role in the hepatic response to injury. Bile acids can impair macrophage function leading to decreased cytokine release. TGR5 is a novel, membrane-bound bile acid receptor, and it has been suggested that the immunosuppressive effect of bile acids can be mediated by TGR5. However, the function of TGR5 in Kupffer cells has not been studied and a direct link between TGR5 and cytokine production in macrophages has not been established. The present study demonstrates that TGR5 is localized in the plasma membrane of isolated Kupffer cells and is responsive to bile acids. Furthermore, bile acids inhibited LPS-induced cytokine expression in Kupffer cells via TGR5-cAMP dependent pathways. TGR5-immunoreactivity in Kupffer cells was increased in rat livers following bile-duct ligation, suggesting that TGR5 may play a protective role in obstructive cholestasis preventing excessive cytokine production thereby reducing liver injury.  相似文献   

4.
Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches. First, we isolated Kupffer cells from human livers and studied the effects of anti-CD14 antibodies on LPS activation of these cells. Kupffer cells were incubated with increasing concentrations of LPS in the presence and absence of recombinant human LPS binding protein (LBP). With increasing concentrations of LPS, human Kupffer cell tumor necrosis factor-alpha (TNF-alpha) production (a marker for Kupffer cell activation) increased in a dose-dependent manner in the presence and absence of LBP. In the presence of anti-human CD14 antibodies, the production of TNF-alpha was significantly diminished. Second, we compared LPS activation of Kupffer cells isolated from wild-type and CD14 knockout mice. Kupffer cells from CD14 knockout mice produced significantly less TNF-alpha in response to the same amount of LPS. Together, these data strongly support a critical role for CD14 in Kupffer cell responses to LPS.  相似文献   

5.
Recently we have reported that bilirubin UDP-glucuronosyltransferase (UGT1A1) is induced in rat liver by chronic ethanol treatment. Several studies have shown that Kupffer cells play a central role in the mediation of various hepatic effects of chronic alcohol consumption. In the present work, the participation of Kupffer cells in the ethanol dependent induction of UGT1A1 was investigated. A group of rats was pretreated with gadolinium chloride, a known Kupffer-cell-depleting agent. We compared the effect of chronic ethanol ingestion on UGT1A1 expression in the liver of normal and gadolinium chloride treated rats. The effect of ethanol on bilirubin glucuronidation was completely prevented in Kupffer cell deficient rats. The western and northern blot analyses showed that the increase of both the protein and mRNA of UGT1A1 was prevented in these animals. These results suggest that Kupffer cells play a major role in the mediation of ethanol-stimulated induction of UGT1A1 in liver parenchymal cells.  相似文献   

6.
Ethanol exposure promotes the development of steatohepatitis, which can progress to end stage liver disease. Kupffer cells have been documented to play a key role in the genesis and progression of alcoholic liver disease with ethanol exposure enhancing Kupffer cell activation. In the present study, we identified the binding of hexokinase II to the mitochondria as a requirement for LPS-induced activation of Kupffer cells and its potentiation by ethanol. LPS and ethanol exposure induced a reduction in sirtuin-3 activity. In turn, the decline of sirtuin-3 activity led to the activation of cyclophilin-D, which mediated an increased binding of hexokinase II to the mitochondria. Suppression of cyclophilin-D expression or enforced detachment of hexokinase II from the mitochondria abrogated the LPS- and ethanol-induced stimulation of Kupffer cells, preventing NADPH oxidase and inflammasome activation. Moreover, activation of AMP-activated protein kinase restored sirtuin-3 activity, thereby preventing LPS and ethanol from stimulating the binding of hexokinase II to the mitochondria and precluding NADPH oxidase and inflammasome activation.  相似文献   

7.
Conditioned media of isolated Kupffer and endothelial liver cells were added to incubations of parenchymal liver cells, in order to test whether secretory products of Kupffer and endothelial liver cells could influence parenchymal liver cell metabolism. With Kupffer cell medium an average stimulation of glucose production by parenchymal liver cells of 140% was obtained, while endothelial liver cell medium stimulated with an average of 127%. The separation of the secretory products of Kupffer and endothelial liver cells in a low and a high molecular weight fraction indicated that the active factor(s) had a low molecular weight. Media, obtained from aspirin-pretreated Kupffer and endothelial liver cells, had no effect on the glucose production by parenchymal liver cells. Because aspirin blocks prostaglandin synthesis, it was tested if prostaglandins could be responsible for the effect of media on parenchymal liver cells. It was found that prostaglandin (PG) E1, E2, and D2 all stimulated the glucose production by parenchymal liver cells, PGD2 being the most potent. Kupffer and endothelial liver cell media as well as prostaglandins E1, E2, and D2 stimulated the activity of phosphorylase, the regulatory enzyme in glycogenolysis. The data indicate that prostaglandins, present in media from Kupffer and endothelial liver cells, may stimulate glycogenolysis in parenchymal liver cells. This implies that products of Kupffer and endothelial liver cells may play a role in the regulation of glucose homeostasis by the liver.  相似文献   

8.
In the past decade, one of the most intriguing subjects in understanding the mechanism of malaria infection has been explanation of the role of Kupffer cells. These liver cells, which play an important part in the body's defense against infection, seemed to have on essential supportive role in the homing o f sporozoites. Do Kupffer cells favor the establishment of primary malaria infection? Extensive research has revealed much, but still not everything we need to know about the sporozoite-Kupffer cell affair.  相似文献   

9.
Activated Kupffer cells and macrophages accumulate in necrotic areas in the liver. Osteopontin, an extracellular matrix with RGD sequence, has been shown to act as a chemokine that can induce monocyte migration. The possibility that osteopontin can play a role in infiltration of both cells into hepatic necrotic areas was investigated in rats. Northern blot analysis revealed that osteopontin mRNA expression was minimal in Kupffer cells and hepatocytes immediately after isolation from normal rats, but slight in hepatic stellate cells assumed nearly quiescent in function after 3 days of culture on plastic dishes. When rat received carbon tetrachloride, liver necrosis developed between 1 and 3 days following the intoxication. In these rats, osteopontin mRNA expression assessed by quantitative competitive RT-PCR was increased in the liver later than 1 day with its peak at 2 days following the intoxication. Kupffer cells and hepatic macrophages and hepatic stellate cells isolated from such liver showed marked expression of osteopontin mRNA on Northern blotting. Immunohistochemical examination disclosed that osteopontin was stained in macrophages including Kupffer cells and stellate cells in the necrotic areas. On electron microscopy, osteopontin stains were present in the Golgi apparatus in these cells. Recombinant human osteopontin promoted migration of Kupffer cells isolated from normal rats and cultured in a Transwell cell culture chamber in a dose-related manner. We conclude that activated Kupffer cells and hepatic macrophages and stellate cells express osteopontin. These cells might contribute to the infiltration of Kupffer cells and macrophages into hepatic necrotic areas by expressing osteopontin.  相似文献   

10.
Endogenous gut-derived bacterial lipopolysaccharides have been implicated as important cofactors in the pathogenesis of liver injury. However, the molecular mechanisms by which lipopolysaccharides exert their effect are not entirely clear. Recent studies have pointed to proinflammatory cytokines such as tumor necrosis factor-alpha as mediators of hepatocyte injury. Within the liver, Kupffer cells are major sources of proinflammatory cytokines that are produced in response to lipopolysaccharides. This review will focus on three important molecular components of the pathway by which lipopolysaccharides activate Kupffer cells: CD14, Toll-like receptor 4, and lipopolysaccharide binding protein. Within the liver, lipopolysaccharides bind to lipopolysaccharide binding protein, which then facilitates its transfer to membrane CD14 on the surface of Kupffer cells. Signaling of lipopolysaccharide through CD14 is mediated by the downstream receptor Toll-like receptor 4 and results in activation of Kupffer cells. The role played by these molecules in liver injury will be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号