首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
2.
With the accumulation and accessibility of information about plant species, it is time to re-evaluate and further divide a global biodiversity hotspot region, Yunnan, located in southwestern China. In this study, we combined data on the distribution of 1010 stenochoric endemic seed plants, vegetation constitution, geological history and climate change, and used these to propose a new system of floristic regions. We identified 11 distinct floristic subregions and 84 floristic provinces within Yunnan. Our work confirmed some views emphasized by Wu Zhengyi that the stenochoric endemic species play a key role in defining floristic provinces; that stenochoric endemic plants with long collection and publication histories are more valuable; that greater attention should be paid to woody plants; and that for Yunnan, a border region, some trans-border distributed elements should be treated cautiously.  相似文献   

3.
Studies undertaken in the Atlantic Coastal Forest have revealed a notable floristic heterogeneity within this vegetation type in NE Brazil. However, there is still a great need for detailed comparisons of the floristic relationships between the various forest types found there. This work presents an analysis of the floristic similarity (at the species level) of these forest as revealed by floristic surveys, with the aim of better understanding and defining this vegetation. Using a binary matrix, grouping, ordering, and TWINSPAN analysis were performed on 742 tree/shrub species listed in 35 different plant surveys. These tree/shrub species were divided by these analysis into two large floristic groups – ombrophilous and semideciduous. The semideciduous group was formed, in general, by forest areas located at altitudes above 700 m (montane forests), and could itself be divided into two subgroups. The first subgroup was located more inland (Pernambuco), while the second subgroup was located nearer the coast (within the states of Pernambuco and Ceará). The ombrophilous group was quite heterogeneous, but could also be divided into two floristic subgroups: i) lowland forests (below 100 m a.s.l) in the states of Pernambuco, Paraíba, and in two areas of Bahia, as well as some montane forests (in Pernambuco, between 640 and 900 m a.s.l.); ii) lowlands forests in the states of Alagoas and Bahia. This latter subgroup is the largest and best defined, and has the highest degree of internal similarity. Nonetheless, it can be further subdivided into two smaller classes, one in Alagoas and the other in Bahia State. The results of this study demonstrate that the concept of the Atlantic Coastal Forest could also include montane ombrophilous forests in Pernambuco State, as these forests form a single floristic unit together with lowland forests in that state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
内蒙古地区羊草草原植被对温度变化的动态响应   总被引:11,自引:1,他引:10       下载免费PDF全文
 1981~1994年连续14年内蒙古羊草草原温度随时间变化结果显示,该区域温度变化具有不对称性,冬季最低均温升高明显,而最高温及平均温度无明显增加趋势。羊草草原气候的变化主要表现在冬季最低温的增加,而不是平均温度的增加。羊草群落的结构和功能对冬季最低均温变化的响应研究表明,随着冬季最低均温的升高,阿尔泰狗哇花(Heteropappus altaicus)和冰草(Agropyron michnoi)的重要值及地上初级生产力将明显增加,而寸草苔(Cares duriuscula)则呈下降趋势,作为群落主要优势种的羊草(Leymus chinensis)和大针茅(Stipa grandis)及其它优势植物对冬季最低均温变化反应不明显。同时,群落的生物多样性指数(Simpson指数、Shannon-Wiener指数)、物种饱和度及地上初级生产力对冬季最低均温也均无显著相关,14年间冬季最低均温的变化并没有对群落的结构和功能产生明显影响。然而,因寸草苔和冰草等少数优势植物对冬季最低均温变化反应的敏感,温度变化的幅度增加或时间延续很可能造成少数优势种在群落中地位的改变,进而可能导致羊草群落结构和功能的变化。这表明在进行气候变化的模拟和模型研究时,不能仅简单地考虑平均温度增加的情况,而应确定主导影响因子,从而了解草原生态系统对全球变化的响应,选取适宜的模型参数。  相似文献   

5.
Biogeographic delineations within the European temperate mountains remain poorly understood, as there has been little effort to assemble and analyze vegetation relevés covering Pyrenees, Alps, Carpathians and Balkans altogether. Our study tackles this issue by focusing on the widely distributed alpine acidic grasslands dominated by Carex curvula. Cluster analysis of more than 800 vegetation relevés revealed the European-scale spatial patterns of vascular plant diversity in these alpine grasslands. The geographical distribution of floristic clusters was partly congruent with the physiography of European mountains. Southern European ranges (Southern Balkans and Pyrenees) exhibit a high level of endemism and corresponding floristic clusters are well separated from the others. Marked floristic similarities between the Easternmost Alps, the Carpathians, and the Northern Balkans (Stara Planina) supported a major floristic boundary that runs through the Austrian Alps and that is likely the legacy of a shared Quaternary history. Within the Alps, floristic clustering was mainly driven by ecological drivers and not geography. This paper presents the first detailed study of spatial patterns of species distribution within the European Alpine System, based on a comprehensive analysis of within- and between-community species diversity. It shows that the quantitative analysis of large and consistent data sets may question the traditional delineations of biogeographic regions within European mountains.  相似文献   

6.
A capacity to predict the effects of fire on biota is critical for conservation in fire‐prone regions as it assists managers to anticipate the outcomes of different approaches to fire management. The task is complicated because species’ responses to fire can vary geographically. This poses challenges, both for conceptual understanding of post‐fire succession and fire management. We examine two hypotheses for why species may display geographically varying responses to fire. 1) Species’ post‐fire responses are driven by vegetation structure, but vegetation – fire relationships vary spatially (the ‘dynamic vegetation’ hypothesis). 2) Regional variation in ecological conditions leads species to select different post‐fire ages as habitat (the ‘dynamic habitat’ hypothesis). Our case study uses data on lizards at 280 sites in a ~ 100 000 km2 region of south‐eastern Australia. We compared the predictive capacity of models based on 1) habitat associations, with models based on 2) fire history and vegetation type, and 3) fire history alone, for four species of lizards. Habitat association models generally out‐performed fire history models in terms of predictive capacity. For two species, habitat association models provided good discrimination capacity even though the species showed geographically varying post‐fire responses. Our results support the dynamic vegetation hypothesis, that spatial variation in relationships between fire and vegetation structure results in regional variation in fauna–fire relationships. These observations explain how the widely recognised ‘habitat accommodation’ model of animal succession can be conceptually accurate yet predictively weak.  相似文献   

7.
Most plant species feature similar biochemical compositions and thus similar spectral signals. Still, empirical evidence suggests that the spectral discrimination of species and plant assemblages is possible. Success depends on the presence or absence of faint but detectable differences in biochemical (e.g., pigments, leaf water and dry matter content) and structural properties (e.g., leaf area, angle, and leaf structure), i.e., optical traits. A systematic analysis of the contributions and spatio-temporal variability of optical traits for the remote sensing of organismic vegetation patterns has not yet been conducted. We thus use time series of optical trait values retrieved from the reflectance signal using physical models (optical trait indicators, OTIs) to answer the following questions: How are optical traits related among patterns of floristic composition and reflectance? How variable are these relations in space and time? Are OTIs suitable predictors of plant species composition?We conducted a case study of three temperate open study sites with semi-natural vegetation. The canopy reflectance of permanent vegetation plots was measured on multiple dates over the vegetation period using a field spectrometer. We recorded the cover fractions of all plant species found in the vegetation plots and extracted gradients of species composition from these data. The physical PROSAIL leaf and canopy optical properties model was inverted with random forest regression models to retrieve time series of OTIs for each plot from the reflectance spectra. We analyzed these data sets using correlation analyses. This approach allowed us to assess the distribution of optical traits across gradients of species composition. The predictive performance of OTIs was tested in relation to canopy reflectance using random forest models.OTIs showed pronounced relationships with floristic patterns in all three study sites. These relationships were subject to considerable temporal variability. Such variability was driven by short-term vegetation dynamics introduced by local resource stress. In 72% of all cases OTIs out-performed the original canopy reflectance spectra as indicators of plant species composition. OTIs are also easier to interpret in an ecological sense than spectral bands or features. We thus conclude that optical traits retrieved from reflectance data have a high indicative value for ecological research and applications.  相似文献   

8.
In this study we examine the relationships between the vegetation of beech and beech-oak forest communities (Hordelymo-Fagetum, Galio-Fagetum, Deschampsio-Fagetum, Betulo-Quercetum) and their soil conditions in the lowlands of northern Germany, based on 84 sample plots. In all plots the vegetation was recorded and soil parameters were analysed (thickness of the O- and the A-horizons, pH, S-value, base saturation, C/N, mean Ellenberg moisture indicator value). The vegetation classification according to the traditional Braun-Blanquet approach was compared with the result of a multivariate cluster analysis. Vegetation-site relationships were analysed by means of an indirect gradient analysis (DCA).Both traditional classification methods and the cluster analysis have produced comparable classification results. So far as the species composition is concerned, a similar grouping of sample plots was found in both approaches. Multivariate cluster analysis thus supports the classification found by the Braun-Blanquet method. The result of the DCA shows that the four forest communities mentioned above represent clearly definable ecological units. The main site factor influencing changes in the species composition is a base gradient, which is best expressed by the S-value. In addition, within the series Hordelymo-Fagetum - Galio-Fagetum - Deschampsio-Fagetum the C/N-ratios and the thickness of the organic layers (O-horizon) increase continuously. By contrast, the floristic differences between oligotrophic forest communities (i.e., Deschampsio-Fagetum and Betulo-Quercetum) cannot be explained by a base gradient and increasing C/N-ratios. It is suggested that a different forest management history in some cases (e.g., promotion of Quercus robur by silvicultural treatments) is responsible for differences in the species composition, but on the other hand the result of the DCA indicates that Fagus sylvatica is replaced by Quercus robur with increasing soil moisture (i.e., with the increasing influence of a high groundwater table). Summarizing these results, it can be concluded that the ecological importance of single site factors affecting the species composition changes within the entire site spectrum covered by the beech and beech-oak forests of northern Germany.  相似文献   

9.
10.
Geometric models of vegetation (conceptual spaces) are reviewed. Spaces with samples or species as axes are termed flortistic spaces, as opposed to ecological space with environmental gradients as axes. The terms floristic and ecological relationships are defined as relationships in floristic and ecological spaces, respectively. Compositional turnover is pointed out as the essence of ecological gradients, and arguments in favour of measuring ecological distance in units of compositional turnover are given. The most important criteria for evaluation of ecological distance measures are considered to be linear response to separation along ecological gradients and robustness. Theoretical disadvantages of measures of floristic relationships used as ecological distance measures are discussed. A new measure of ecological distance, separation along a DCA ordination axis, is proposed. This measure and four measures of floristic relationships were tested on four simulated coenoclines (high and low beta diversity, high and low noise) using four weighting functions. The new measure was generally superior, particularly with noisy data. The distance measures generally performed best with intermediate weighting of a percentage cover scale. Application of DCA to calculation of ecological distances in multi-gradient systems is briefly discussed. The potential of DCA for rescaling of ecological gradients is emphasized, and some possible applications of rescaling are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号