首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
植物根际促生菌的筛选及鉴定   总被引:15,自引:0,他引:15  
【目的】植物根际促生菌(PGPR)和植物的互作关系往往不稳定,PGPR菌群有可能提高菌株对野外环境的适应性。为此,本文根据PGPR促生机制的多样性,从不同植物根际土壤进行了PGPR的筛选及鉴定。【方法】首先,按照固氮、解磷、解钾、拮抗6种常见病原真菌,同时能在植物根际定殖为基本初筛标准,然后在实验室条件下测定初筛菌株的多项促生能力(PGP),最后通过生理生化试验和16SrRNA基因序列分析对所筛菌株进行鉴定。【结果】从江苏扬州、盐城等地土壤样品筛选出14株PGPR,具有体外抑菌、产NH3、产IAA、产HCN、产嗜铁素、解磷、溶钾、固氮以及产抗生素等促生能力。分类鉴定结果显示:7株属于假单胞菌属(Pseudomonas)、3株属于类芽孢杆菌属(Paenibacillus)、2株为芽孢杆菌属(Bacillus)、1株为布克霍尔德氏菌属(Burkholderia)、1株为欧文氏菌属(Erwinia)。【结论】所筛细菌具有多种促生能力,且能在根际定殖,为进一步构建多功能PGPR广适菌群提供菌株资源。  相似文献   

2.
为进一步开发植物促生菌,该研究以巨菌草根部为主要材料进行巨菌草促生菌的筛选,采用解磷、固氮和产IAA等筛选标准对初筛菌株分别进行多项促生能力的测定。通过形态观察、生理生化特性和 16S rDNA序列同源性分析对促生效果最好的菌株YB-07进行分类和鉴定,分别测定其促生能力后从中筛选出促生效应强的11个菌株进行盆栽试验,并通过对这些菌株单独回接和多菌混接的小麦盆栽试验测定其对小麦的促生效应。结果表明:从巨菌草根部分离得到了101株促生菌株,分类鉴定结果显示菌株YB-07归属于根瘤菌属(Rhizobium),其溶磷量为20.1 mg·L-1、产IAA量为23.7 mg·L-1,同时具有产氨能力。盆栽试验测定结果显示,多菌混合接种对小麦的促生效应在株高、干重、鲜重和叶绿素含量上,分别较对照组增加了24.49%、31.84%、28.06%和34.14%。单菌接种对小麦的促生表现在株高、干重、鲜重和叶绿素含量上,分别较对照组增加了13.54%、20.45%、16.84%和35.19%。所筛选到的菌株具有良好的促生长作用,能为进一步构建巨菌草促生菌菌群提供良好的种质资源。  相似文献   

3.
玉米根际高效溶磷菌的筛选、鉴定及促生效应研究   总被引:1,自引:0,他引:1  
为获得玉米根际高效溶磷促生菌(Plant growth-promoting rhizobacteria,PGPR)并明确其促生特性,采用选择培养方法从玉米根际土壤筛选出优良PGPR 菌株,测定其溶磷及分泌吲哚乙酸(IAA)的能力,并对优良菌株进行鉴定;采用盆栽试验研究菌株的促生作用。结果分离到2 株优良PGPR 菌株CH07和FD11,其溶磷量分别为368.5 mg/L和321.5 mg/L,产IAA量分别为30.93 mg/L和15.93 mg/L。形态学特征、生理生化特征和16S rDNA 序列分析结果表明,CH07为芽孢杆菌属(Bacillus aryabhattai),FD11为链霉菌属(Streptomyces maritimus)。最后通过盆栽试验对这2株细菌分离物的促生效果进行比较,结果发现,CH07、FD11,尤其是CH07与FD11的复合物,对苋菜的株高及地上部鲜重有积极作用,可作为研制生物肥料的优良菌株资源。  相似文献   

4.
4株茶树根际促生菌菌株的鉴定及促生作用   总被引:5,自引:1,他引:4  
【背景】根际促生菌可以促进植物生长、提高植物抗性。茶树根际具有特殊的根土微生物生境,可以获得具促生作用的有益微生物。【目的】探究4株茶树根际促生菌菌株的分类地位及促生作用,筛选优良的根际促生菌菌株。【方法】通过形态、生理生化特征、16S rRNA基因序列同源性比对鉴定4株茶树根际促生菌,采用钼锑抗比色法测定溶磷量,通过比色法测定ACC脱氨酶活性、CAS法测定产铁载体能力、Salkowski法测定产IAA (Indoleacetic acid)的能力进行促生作用研究,通过盆栽实验测试白菜、空心菜、苋菜及水稻的株高及鲜重以分析促生效应。【结果】鉴定KKS-6-N1为放射型土壤杆菌(Agrobacteriumradiobacter), KKS-7-N7为铜绿假单胞菌(Pseudomonas aeruginosa),GD3为Pseudomonashunanensis,GD12为弯曲芽孢杆菌(Bacillusflexus)。固氮菌株KKS-6-N1可产铁载体;固氮菌株KKS-7-N7具有解磷及产铁载体能力,分泌的IAA含量高达101.29mg/L;解钾菌株GD3具溶磷能力,分泌的ACC脱氨酶酶活为8.09μmol/(mg·h),相对铁载体含量为0.31;具固氮解钾性能的菌株GD12分泌的ACC脱氨酶活性为14.46μmol/(mg·h)。盆栽试验表明,4个菌株对白菜、空心菜、苋菜的株高和鲜重均有明显促进作用,尤以GD3效果更甚。【结论】茶树根际促生菌菌株Pseudomonas hunanensis GD3促生作用显著,具有开发成微生物菌肥的潜力。  相似文献   

5.
获得辣椒根际促生菌(Plant growth promoting rhizobacteria,PGPR)并探究其抗病促生特性。采用固氮、无机磷和有机磷培养基从江苏省徐州市采集的辣椒根际土壤中分离筛选根际促生菌株(PGPR),通过形态特征及16S rDNA序列分析进行菌株鉴定,对菌株的固氮、解磷、分泌3-吲哚乙酸(IAA)能力及对4种辣椒病害病原菌抗病能力进行探究。得到13株辣椒PGPR菌株,经鉴定分别属于Bacillus、Pseudomonas、Lelliottia、Siccibacter、Achromobacter、Microbacterium和Paenibacillus;13株PGPR菌株均有固氮功能;其中7株可解有机磷,分别属于Lelliottia、Bacillus、Siccibacter、Microbacterium、Paenibacillus;5株可解无机磷,分别属于Lelliottia、Bacillus、Siccibacter、Pseudomonas;3株具有分泌IAA能力,分别属于Lelliottia、Siccibacter、Bacillus;5株具有抗病能力,分别属于Bacillus、Lelliottia、Siccibacter。辣椒根际土壤含有在农业生产上具有潜在的应用价值的多功能根际促生菌。  相似文献   

6.
【目的】为探究盐生植物田菁及其根际功能微生物改良盐碱地的效果,本研究从黄河三角洲盐碱区田菁根际土壤中分离促生菌,并明确其耐盐促生效果。【方法】采用选择培养方法从田菁根际土壤中分离固氮菌、解磷菌以及解钾菌,并进行16S rRNA分子生物学鉴定。之后对菌株的耐盐及促生特性进行测定,筛选性状优良菌株进行玉米促生作用研究。【结果】共分离得到105株根际促生菌,其中N102兼具多种促生特性且耐盐性达15%。田菁种子发芽试验表明,N102可显著提高田菁发芽率(47%,P0.05)、芽长(48.5%,P0.05)和根长(60%,P0.05);玉米盆栽试验结果表明,N102对盐胁迫下玉米的株高、根长、叶绿素含量、地上部干重以及根干重具有显著的促进作用。经系统发育分析,N102与Enterobacter soli ATCC BAA-2102 (NR117547)序列相似度为99.30%,鉴定属于Enterobacter属。【结论】菌株N102具有多种植物促生耐盐特性,具有开发成有效促进盐碱地作物生长的微生物肥的良好前景。  相似文献   

7.
【目的】以苎麻(Boehmeria nivea L. Gaud)根及根围土壤为研究材料,进行苎麻促生菌的筛选,并初步探索其促生作用机制。【方法】首先,以溶磷和解钾为基本筛选标准,初筛菌株在实验室条件下测定多项促生能力进行复筛;然后通过种子萌发、盆栽试验测定菌株对苎麻的促生效应,最后,通过形态观察、生理生化特性和16S rRNA基因序列同源性分析,对促生菌株进行分类学鉴定。【结果】从苎麻根和根围土壤中分离得到了13株菌同时具备溶磷和解钾能力,其中4株菌(RA-2、RAM-2、RAM-5和RAM-6)具备产铁载体、产IAA和产氨能力。种子萌发和盆栽试验的测定结果显示:4株菌株均能促进苎麻种子的萌发和植株的生长,其中菌株RA-2和RAM-5相比于对照处理能显著提高苎麻种子的萌发率、幼根长、株高和根系干重。分类鉴定结果显示菌株RA-2和RAM-5均属于伯克霍德菌属(Burkholderia)。【结论】从苎麻根围筛选到具有促生能力的菌株,为进一步开发研制苎麻专型促生菌剂或专型微生物有机肥提供资源。  相似文献   

8.
【背景】挖掘兼具烟碱降解和植物根际促生细菌(Plant Growth-Promoting Rhizobacteria,PGPR)功能的细菌资源,有助于保护土壤质量,实现绿色种植。【目的】分析烤烟根际细菌多样性,筛选可降解高浓度烟碱的PGPR。【方法】采用纯培养法在选择性培养基上分离烟碱降解细菌。通过BOXA1R-PCR分析技术、16SrRNA基因测序及系统发育树构建,对菌株的遗传多样性和分类学地位进行分析。进一步评价了菌株的吲哚乙酸(Indole-3-Acetic Acid,IAA)活性、溶磷能力、病原菌拮抗能力等PGPR指标,以筛选出高效PGPR,最后通过盆栽试验验证其促生效果。【结果】分离得到58株烟碱降解细菌,根据BOXA1R-PCR指纹图谱选取11株菌进行16S rRNA基因序列测定,结果表明,58株菌分别属于芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、拉乌尔菌属(Raoultella)和短波单胞菌属(Brevundimonas)4个属,以芽孢杆菌属(Bacillus)为优势菌属。58株细菌中48.28%的菌株可产IAA,27.59%具备溶磷能力,37.93%具备纤维素降解能力,G2-13、G2-3及HT2-8因促生与抗病特性突出而被筛选为目标功能菌。盆栽试验结果表明,G2-13菌株对幼苗生长的促进作用明显,可使株高与地上部鲜重分别增加33.05%与53.32%。【结论】烤烟根际存在较为丰富多样的烟碱降解细菌,它们在种植业上具有潜在的应用价值。  相似文献   

9.
【背景】植物根际促生细菌是一类位于植物根际并能对植物生长产生促进作用的有益菌,在微生物肥料领域具有重要的应用价值。【目的】对濒危植物连香树根际的植物根际促生细菌进行分离筛选和连香树接种效应评价,挑选对连香树生长促进作用最为显著的菌种进行促生特性分析、菌种鉴定及全基因组序列测定与促生相关基因分析。【方法】利用相应筛选培养基对连香树根际土壤中解有机磷、溶无机磷和解钾细菌进行分离筛选,通过根际接种验证各菌株对连香树实生苗的促生能力。从中选取促生作用最为显著的细菌,进行解钾能力、产吲哚乙酸(indole-3-acetic acid,IAA)和1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylate,ACC)脱氨酶能力测定。利用菌体形态观察、16S rRNA基因序列分析及全基因组序列的平均核苷酸一致性比对进行菌种鉴定。最后利用基因组功能注释和比较基因组学分析对该菌株中的植物促生及重金属抗性相关基因进行解析。【结果】从连香树根际土壤中共筛选得到3株解有机磷细菌、2株溶无机磷细菌和2株解钾细菌,其中解钾细菌LWK2对连香树实生苗的生长促进作用最为显著。该菌株能够产...  相似文献   

10.
【背景】华南地区镉(Cd)污染严重,与有益微生物共生能够使作物通过直接或间接的机制解除镉毒,提高抗逆性,进而促进生长。耐镉促生菌剂具有广泛的应用前景。【目的】从华南地区受镉污染植株的根内和根际筛选出耐镉且能促进大豆生长的促生菌,以丰富促进田间大豆生产的优异菌种资源。【方法】采用平板划线法从植株的根内或根际分离菌株,通过生理生化特性和16S rRNA基因序列分析对分离菌株进行初步研究,利用盆栽试验探究镉胁迫下菌株对大豆生长的影响,通过测定丙二醛含量和总抗氧化能力探究菌株的耐镉机制。【结果】分离获得4株菌D1、D2、D3和D4,促生特性试验证明4株菌均具有溶磷、产吲哚乙酸和铁载体的能力。经16S rRNA基因序列分析鉴定,D1、D2、D3和D4菌株分别属于不动杆菌属、微小杆菌属、类芽孢杆菌属和普罗威登斯菌属。用这4株菌进行不同镉处理的大豆(巴西10号)盆栽试验,结果表明,4株菌均具有耐镉和促进大豆生长的作用。不添加镉的条件下,大豆接种D4菌株的地上部干重、根部干重和株高分别增加了28%、35%和31%;在添加20mg/kg-CdCl2·5/2H2...  相似文献   

11.
We investigated the effects of three plant growth promoting rhizobacteria (PGPR), on Biological Nitrogen Fixation (BNF), nodulation and growth promotion by soybean (Glycine max) var. Osumi plants. The strains, Aur 6, Aur 9 and Cell 4, belong toPsedomonas fluorescens, Chryseobacterium balustinum andSerratia fonticola, respectively. Inoculation modes for the PGPRs andSinorhizobium fredii (carried out through irrigation), were examined. In the first mode, PGPRs andS. fredii were co-inoculated. In the second mode, we first inoculatedS. fredii and after the PGPRs, which were added 5 or 10 days later (each inoculation being an independent treatment). In the third mode, the PGPRs were inoculated first, and theS. fredii was inoculated 5 days later. We also included treatments inoculated with only the PGPRs (one PGPR per treatment) and only withS. fredii. Plants were maintained in a greenhouse under controlled environmental conditions, and were sampled 3 months after sowing. The results obtained showed the effects of the inoculation sequence. The most significant effects on growth parameters (stem plus leaf weight and fresh root weight) were found when inoculations with PGPR andS. fredii were at different times or when we inoculated only with PGPR and the plants were watered with nitrogen. Co-inoculation had no positive effects on any parameter, probably due to competition between the PGPR andS. fredii. Our results indicate that the inoculation modes with PGPR and rhizobia play a very important role in the effects produced. Thus, although plant growth promoting rhizobacteria may interact synergistically with root-nodulating rhizobia, plant growth promoting rhizobacteria selected for one crop should be assessed for potentially hazardous effects on other crops before being used as inoculants.  相似文献   

12.
AIMS: This study was conducted to test the hypothesis that the bacterial strains possessing 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity may also promote growth of inoculated plants and could increase nodulation in legumes upon co-inoculation with rhizobia. METHODS AND RESULTS: Several rhizobacteria were isolated from maize rhizosphere through enrichment on ACC as a sole N source. Purified isolates were screened for growth promotion in maize under axenic conditions and for in vitro ACC-deaminase activity. A significant positive correlation was observed between in vitro ACC-deaminase activity of bacterial cells and root elongation. None of the isolates produced auxins. Bradyrhizobium japonicum produced less amount of auxins but did not carry ACC-deaminase activity. Results of pot experiment revealed that co-inoculation with Bradyrhizobium and plant growth promoting rhizobacteria (PGPR) isolates enhanced the nodulation in mung bean compared with inoculation with Bradyrhizobium alone. CONCLUSIONS: It is highly expected that inoculation with rhizobacteria containing ACC-deaminase hydrolysed endogenous ACC into ammonia and alpha-ketobutyrate instead of ethylene. Consequently, root and shoot growth as well as nodulation were promoted. SIGNIFICANCE AND IMPACT OF THE STUDY: The ACC-deaminase trait could be employed as an efficient tool to screen effective PGPR, which could be successfully used as biofertilizers to increase the growth of inoculated plants as well as nodulation in legumes.  相似文献   

13.
Plant growth promoting rhizobacteria (PGPR) are an attractive eco-friendly alternative to chemicals in agriculture. While the rhizospheres of crop plants have been well studied with the objective of screening PGPR, weeds, which play an important role in maintaining ecological balance, have largely been ignored. The rhizosphere of a luxuriantly growing, medicinal weed, Cassia occidentalis was analysed by enumerating PGPR on N free media from the most diverse stage of plant (determined by profiles obtained on denaturing gradient gel electrophoresis). Each isolate was tested for other plant growth promotion assays including production of cellulase, indole acetic acid (IAA), ammonia, HCN, siderophore and chitinase to select for ones possessing multi-trait plant growth promoting (PGP) properties. Selected isolates were used for bacterization of Vigna radiata and Vigna mungo to evaluate their efficacy in promoting plant's growth in seedling germination and axenic pot conditions. Thirty five isolates were analysed further for the array of PGP properties they exhibit. A total of 6 isolates were shortlisted on the basis of maximum traits positive, amount of phosphate solubilized and IAA produced. V. radiata responded well to seed bacterization during seedling germination. A maximum increase of approximately 36 and 60?% was observed for shoot and root length, respectively in V. radiata in axenic pot culture over control plants. Extensive branching of roots was also observed with isolate NL, which produced the maximum amount of IAA. Present study investigated the plant growth promoting isolates obtained on N free media in the rhizosphere of C. occidentalis, which have the potential to be used as inoculants for other crops. This provides a new dimension to the significance of weeds in agricultural ecosystems. The study opens up possibilities for utilization of this property of weeds in plant growth promotion, and subsequent enhancement of yield for agricultural crops.  相似文献   

14.
Although plant growth-promoting rhizobacteria (PGPR) have been reported to influence plant growth, yield and nutrient uptake by an array of mechanisms, the specific traits by which PGPR promote plant growth, yield and nutrient uptake were limited to the expression of one or more of the traits expressed at a given environment of plant–microbe interaction. We selected nine different isolates of PGPR from a pool of 233 rhizobacterial isolates obtained from the peanut rhizosphere on the basis of ACC-deaminase activity. The nine isolates were selected, initially, on the basis of germinating seed bioassay in which the root length of the seedling was enhanced significantly over the untreated control. All the nine isolates were identified as Pseudomonas spp. Four of these isolates, viz. PGPR1, PGPR2, PGPR4 and PGPR7 (all fluorescent pseudomonads), were the best in producing siderophore and indole acetic acid (IAA). In addition to IAA and siderophore-producing attributes, Pseudomonas fluorescens PGPR1 also possessed the characters like tri-calcium phosphate solubilization, ammonification and inhibited Aspergillus niger and A. flavus in vitro. P. fluorescens PGPR2 differed from PGPR1 in the sense that it did not show ammonification. In addition to the traits exhibited by PGPR1, PGPR4 showed strong in vitro inhibition to Sclerotium rolfsii. The performances of these selected plant growth-promoting rhizobacterial isolates were repeatedly evaluated for 3 years in pot and field trials. Seed inoculation of these three isolates, viz. PGPR1, PGPR2 and PGPR4, resulted in a significantly higher pod yield than the control, in pots, during rainy and post-rainy seasons. The contents of nitrogen and phosphorus in soil, shoot and kernel were also enhanced significantly in treatments inoculated with these rhizobacterial isolates in pots during both the seasons. In the field trials, however, there was wide variation in the performance of the PGPR isolates in enhancing the growth and yield of peanut in different years. Plant growth-promoting fluorescent pseudomonad isolates, viz. PGPR1, PGPR2 and PGPR4, significantly enhanced pod yield (23–26%, 24–28% and 18–24%, respectively), haulm yield and nodule dry weight over the control in 3 years. Other attributes like root length, pod number, 100-kernel mass, shelling out-turn and nodule number were also enhanced. Seed bacterization with plant growth-promoting P. fluorescens isolates, viz. PGPR1, PGPR2 and PGPR4, suppressed the soil-borne fungal diseases like collar rot of peanut caused by A. niger and PGPR4 also suppressed stem rot caused by S. rolfsii. Studies on the growth patterns of PGPR isolates utilizing the seed leachate as the sole source of C and N indicated that PGPR4 isolate was the best in utilizing the seed leachate of peanut, cultivar JL24. Studies on the rhizosphere competence of the PGPR isolates, evaluated on the basis of spontaneous rifampicin resistance, indicated that PGPR7 was the best rhizoplane colonizer and PGPR1 was the best rhizosphere colonizer. Although the presence of growth-promoting traits in vitro does not guarantee that an isolate will be plant growth promoting in nature, results suggested that besides ACC-deaminase activity of the PGPR isolates, expression of one or more of the traits like suppression of phytopathogens, solubilization of tri-calcium phosphate, production of siderophore and/or nodulation promotion might have contributed to the enhancement of growth, yield and nutrient uptake of peanut.  相似文献   

15.
The present attempt was made to study the role of exogenously applied salicylic acid (SA) and putrescine (Put) on the phytoremediation of heavy metals and on the growth parameters of chickpea grown in sandy soil. The SA and Put were applied alone as well as in combination with plant growth promoting rhizobacteria (PGPR). The PGPRs, isolated from the rhizosphere of chickpea, were characterized on the basis of colony morphology and biochemical traits through gram staining, catalase and oxidase tests, and identified by 16S-rRNA gene sequencing as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium. The chickpea seeds were soaked in 24 h old fresh cultures of isolates for 2–3 h prior to sowing. The growth regulators (PGRs), SA and Put (150 mg/L), were applied to the seedlings as foliar spray at three-leaf stage. The result revealed that plants treated with SA and Put alone or in combination with PGPRs, significantly enhanced the accumulation of heavy metals in plant shoot. PGPR induces Ni accumulation in sensitive variety and Pb in both the varieties, the PGR in combination augment the bioremediation effects of PGPR and both sensitive and tolerant variety showed significant accumulation of Ni, Cd, and Pb. SA was more effective in accumulating Ni and Cd whereas, significant accumulation of Pb was recorded in Put. PGPRs further augmented the PGRs induced accumulation of heavy metals and macronutrients in chickpea shoot and in rhizosphere. SA increased the proline content of tolerant variety while decreasing the lipid peroxidation and proline content of the sensitive variety but decreased the stimulating effect of PGPR in proline production. Interactive effects of PGPR and PGRs are recommended for inducing phytoremediation in chickpea plants under drought stress.  相似文献   

16.
AIMS: Plant growth promoting rhizobacteria (PGPR) are commonly used as inoculants for improving the growth and yield of agricultural crops, however screening for the selection of effective PGPR strains is very critical. This study focuses on the screening of effective PGPR strains on the basis of their potential for in vitro auxin production and plant growth promoting activity under gnotobiotic conditions. METHODS AND RESULTS: A large number of bacteria were isolated from the rhizosphere soil of wheat plants grown at different sites. Thirty isolates showing prolific growth on agar medium were selected and evaluated for their potential to produce auxins in vitro. Colorimetric analysis showed variable amount of auxins (ranging from 1.1 to 12.1 mg l-1) produced by the rhizobacteria in vitro and amendment of the culture media with l-tryptophan (l-TRP), further stimulated auxin biosynthesis (ranging from 1.8 to 24.8 mg l-1). HPLC analysis confirmed the presence of indole acetic acid (IAA) and indole acetamide (IAM) as the major auxins in the culture filtrates of these rhizobacteria. A series of laboratory experiments conducted on two cv. of wheat under gnotobiotic (axenic) conditions demonstrated increases in root elongation (up to 17.3%), root dry weight (up to 13.5%), shoot elongation (up to 37.7%) and shoot dry weight (up to 36.3%) of inoculated wheat seedlings. Linear positive correlation (r = 0.99) between in vitro auxin production and increase in growth parameters of inoculated seeds was found. Based upon auxin biosynthesis and growth-promoting activity, four isolates were selected and designated as plant growth-promoting rhizobacteria (PGPR). Auxin biosynthesis in sterilized vs nonsterilized soil inoculated with selected PGPR was also monitored that revealed superiority of the selected PGPR over indigenous microflora. Peat-based seed inoculation with selected PGPR isolates exhibited stimulatory effects on grain yields of tested wheat cv. in pot (up to 14.7% increase over control) and field experiments (up to 27.5% increase over control); however, the response varied with cv. and PGPR strains. CONCLUSIONS: It was concluded that the strain, which produced the highest amount of auxins in nonsterilized soil, also caused maximum increase in growth and yield of both the wheat cv. SIGNIFICANCE AND IMPACT OF STUDY: This study suggested that potential for auxin biosynthesis by rhizobacteria could be used as a tool for the screening of effective PGPR strains.  相似文献   

17.
Two plant growth promoting rhizobacteria (PGPR), one identified as rhizospheric Bacillus pumilus and other as endophytic Pseudomonas pseudoalcaligenes, were isolated from the root surface as well as from within the roots of paddy variety GJ17. Adhesion and invasion of the isolated strains with the paddy root was confirmed by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining. The effects of these two PGPRs were tested alone and in combination on the production of defense related enzymes such as chitinase, polyperoxidase (PO) and polyphenol oxidase (PPO) in the presence of Magnaporthe grisea, the causative agent of rice blast. The results indicate that the endophytic bacteria showed a better response to the fungal infection than the rhizospheric one. The PGPRs were able to induce the defense enzymes even in the absence of the pathogen. This induction of defense enzymes in response to PGPRs persists for the entire life of the plant to defend against pathogens. So association of PGPRs with the paddy GJ-17 root acts as a vaccine to reduce disease severity by Magnaportha grisea.  相似文献   

18.
Heavy metal contamination of agricultural soils has increased along with industrialization. Mercury is a toxic heavy metal and a widespread pollutant in the ecosystem. Mercury-tolerant and plant growth-promoting rhizobacteria (PGPR) HG 1, HG 2, and HG 3 were isolated from the rhizosphere of plants growing in a mercury-contaminated site. These isolates were able to grow in the presence of mercury ranging from 10 to 200 µM in minimal medium and 25 to 500 µM in LB medium. The strains were characterized by morphological, biochemical, and plant growth-promoting traits. In the present study, these PGPR strains were analyzed for their involvement in metal stress tolerance in Triticum aestivum (wheat). Two bacterial strains, namely, Enterobacter ludwigii (HG 2) and Klebsiella pneumoniae (HG 3), showed better growth promotion of T. aestivum seedlings under metal stress. Different growth parameters like, water content and biochemical properties were analyzed in the PGPR-inoculated wheat plants under 75 µM HgCl2. Shoot length, root length, shoot dry weight, root dry weight and relative water content (RWC) were significantly higher in inoculated plants compared to uninoculated plants under stress condition. Proline content, electrolyte leakage, and malondialdehyde content (shoots and roots) were significantly lower in inoculated plants with respect to uninoculated plants under mercury stress. Therefore, it could be assumed that all these parameters collectively improve plant growth under mercury stress conditions in the presence of PGPR. Hence, these PGPRs can serve as promising candidates for increasing plant growth and also have immense potential for bioremediation of mercury-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号