首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In this study we demonstrated that heat shock protein (HSP) 70 expression by hyperthermia induced antitumor immunity in the T-9 rat glioma. Our hyperthermic system using magnetic nanoparticles induced necrotic cell death that correlated with HSP70 expression. We purified the HSP70-peptide complexes from the tumor after hyperthermia to investigate whether HSP70 was involved in the antitumor immunity, and we found that in the F344 rats immunized with T-9-derived HSP70 the tumor growth of T-9 was significantly suppressed. Tumor rejection assay after hyperthermic treatment of implanted T-9 cells with incorporated magnetite cationic liposomes (MCL) was performed to investigate whether antitumor immunity was induced by release of HSP70 from the necrotic cells in the F344 rat. Tumor growth was strongly suppressed in the rats subjected to hyperthermia of implanted T-9 cells, and 50% of rats were protected from challenge with T-9 cells. Immunogenicity was enhanced when the HSP70-overexpressing T-9 cells were killed via necrosis in rats by hyperthermia, after which all rats were completely protected from challenge with T-9 cells. Our hyperthermic system produces vaccination with HSP70-peptide via necrotic tumor cell death in vivo, resulting in antitumor immunity. This phenomenon, which may be termed in situ vaccination, has important implications for the development of novel antitumor therapies.  相似文献   

2.

Background

We have developed magnetite cationic liposomes (MCLs) and applied them as a mediator of local hyperthermia. MCLs can generate heat under an alternating magnetic field (AMF). In this study, the in vivo effect of hyperthermia mediated by MCLs was examined using 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary cancer as a spontaneous cancer model.

Method

MCLs were injected into the mammary cancer and then subjected to an AMF.

Results

Four rats in 20 developed mammary tumors at more than 1 site in the body. The first-developed tumor in each of these 4 rats was selected and heated to over 43°C following administration of MCLs by an infusion pump. After a series of 3 hyperthermia treatments, treated tumors in 3 of the 4 rats were well controlled over a 30-day observation period. One of the 4 rats exhibited regrowth after 2 weeks. In this rat, there were 3 sites of tumor regrowth. Two of these regrowths were reduced in volume and regressed completely after 31 days, although the remaining one grew rapidly. These results indicated hyperthermia-induced immunological antitumor activity mediated by the MCLs.

Conclusion

Our results suggest that hyperthermic treatment using MCLs is effective in a spontaneous cancer model.
  相似文献   

3.
Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma   总被引:1,自引:0,他引:1  
BACKGROUND: We have developed magnetite cationic liposomes (MCLs) and applied them to local hyperthermia as a mediator. MCLs have a positive charge and generate heat under an alternating magnetic field (AMF) by hysteresis loss. In this study, the effect of hyperthermia using MCLs was examined in an in vivo study of hamster osteosarcoma. METHOD: MCLs were injected into the osteosarcoma and then subjected to an AMF. RESULTS: The tumor was heated at over 42 degrees C, but other normal tissues were not heated as much. Complete regression was observed in 100% of the treated group hamsters, whereas no regression was observed in the control group hamsters. At day 12, the average tumor volume of the treated hamsters was about 1/1000 of that of the control hamsters. In the treated hamsters, no regrowth of osteosarcomas was observed over a period of 3 months after the complete regression. CONCLUSION: These results suggest that this treatment is effective for osteosarcoma.  相似文献   

4.
Heat shock proteins (HSPs) are highly conserved proteins whose syntheses are induced by a variety of stresses, including heat stress. Since the expression of HSPs, including HSP70, protects cells from heat-induced apoptosis, HSP expression has been considered to be a complicating factor in hyperthermia. On the other hand, recent reports have shown the importance of HSPs, such as HSP70, HSP90 and glucose-regulated protein 96 (gp96), in immune reactions. If HSP expression induced by hyperthermia is involved in tumor immunity, novel cancer immunotherapy based on this novel concept can be developed. In such a strategy, a tumor-specific hyperthermia system, which can heat the local tumor region to the intended temperature without damaging normal tissue, would be highly advantageous. To achieve tumor-specific hyperthermia, we have developed an intracellular hyperthermia system using magnetite nanoparticles. This novel hyperthermia system can induce necrotic cell death via HSP expression, which induces antitumor immunity. In the present article, cancer immunology and immunotherapy based on hyperthermia, and HSP expression are reviewed and discussed. This article forms part of the Symposium in Writing "Thermal stress-related modulation of tumor cell physiology and immune responses", edited by Elfriede Noessner.  相似文献   

5.
We investigated the relative contributions of temperature and a 300 kHz alternating magnetic field (AMF) on magnetic hyperthermia treatment (MHT). Our system consisted of an induction coil, which generated AMF by electric current flow, and a newly developed, temperature‐controlled circulating water‐jacketed glass bottle placed inside the coil. The AMF generator operated at a frequency of 300 kHz with variable field strength ranging from 0 to 11 mT. Four treatment conditions were employed: (A) control (37 °C, 0 mT), (B) AMF exposure (37 °C, 11 mT), (C) hyperthermia (46 °C, 0 mT), and (D) hyperthermia plus AMF exposure (46 °C, 11 mT) for 30 min. Cell viability and apoptotic death rate were estimated. The relative contributions or interactions of hyperthermia (46 °C) and AMF (11 mT) on MHT were evaluated using 2 × 2 factorial experiment analysis. Group A was statistically different (P < 0.05) from each of the other treatments. The observed effects on both cell viability and apoptotic cell death were influenced by temperature (97.36% and 92.15%, respectively), AMF (1.78% and 4.99%, respectively), and the interactions between temperature and AMF (0.25% and 2.36%, respectively). Thus, the effect of hyperthermia was significant. Also, AMF exposure itself might play a role in MHT, although these observations were made in vitro. These findings suggest a possible presence of an AMF effect during clinical magnetic hyperthermia. Bioelectromagnetics 34:95–103, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Heat shock proteins are recognized as significant participants in immune reactions. In this study, we have demonstrated that the cell surface presentation of MHC class I antigen was increased in tandem with increased heat shock protein 70 (HSP70) expression and the immunogenicity of rat T-9 glioma cells was enhanced by hyperthermia. T-9 cells showed growth inhibition for 24 h after the heat treatment at 43 degrees C for 1 h in vitro, but then resumed a normal growth rate. HSP70 expression reached a maximum at 24 h after heating. Flow cytometric analysis revealed a significant increase in MHC class I antigen on the surface of the heated cells. The augmentation of MHC class I surface expression started 24 h after heating and reached a maximum 48 h after heating. The expression of other immunologic mediators, such as intracellular adhesion molecule-1 (ICAM-1) and MHC class II antigens, did not increase. In an in vivo experiment using immunocompetent syngeneic rats (F344), growth of the heated T-9 cells, with augmentation of MHC class I antigen surface expression, was significantly inhibited, while the cells grew progressively in nude rats (F344/N Jcl-rnu). Furthermore, compared with lymphocytes from non-immunized (PBS only injection) rats or rats injected with non-heated T-9 cells, the splenic lymphocytes of the rats in which the heated T-9 cells were injected displayed specific cytotoxicity against T-9 cells. These results suggest that HSP70 is an important modulator of tumor cell immunogenicity, and that hyperthermic treatment of tumor cells can induce the host antitumor immunity via the expression of HSP70. These results may benefit further efforts on developing novel cancer immunotherapies based on hyperthermia.  相似文献   

7.
MAGE-3, a member of melanoma antigen (MAGE) gene family, is recognized as an ideal candidate for tumor vaccine because it is expressed in a significant proportion of tumors of various histological types and can induce antigen-specific immune response in vivo. There is now substantial evidence that heat shock proteins (HSPs) isolated from cancer cells and virus-infected cells can be used as vaccines to produce cancer-specific or virus-specific immunity. In this research, we investigated whether M. tuberculosis HSP70 can be used as vehicle to elicit immune response to its accompanying MAGE-3 protein. A recombinant protein expression vector was constructed that permitted the production of fusion protein linking amino acids 195–314 of MAGE-3 to the C terminus of HSP70. We found that HSP70-MAGE-3 fusion protein can elicit stronger cellular and humoral immune responses against MAGE-3 expressing murine tumor than those elicited by MAGE-3 protein in vivo, which resulted in potent antitumor immunity against MAGE-3-expressing tumors. Covalent linkage of HSP70 to MAGE-3 was necessary to elicit immune response to MAGE-3. These results indicate that linkage of HSP70 to MAGE-3 enhanced immune responses to MAGE-3 in vivo and HSP70 can be exploited to enhance the cellular and humoral immune responses against any attached tumor-specific antigens.  相似文献   

8.
Modeling and simulation of the temperature distribution, the mass concentration, and the heat transfer in the breast tissue are hot issues in magnetic fluid hyperthermia treatment of cancer. The breast tissue can be visualized as a porous matrix with saturated blood. In this paper, 3D in silico study of breast cancer hyperthermia using magnetic nanoparticles (MNPs) is conducted. The 3D FEM models are incorporated to investigate the infusion and backflow of nanofluid in the breast tumor, the diffusion of nanofluid, temperature distribution during the treatment, and prediction of the fraction of tumor necrosis while dealing with the thermal therapy. All the hyperthermia procedures are simulated and analyzed on COMSOL Multiphysics. The sensitivity of frequency and amplitude of the applied magnetic field (AMF) is investigated on the heating effect of the tumor. The mesh dependent solution of Penne's bioheat model is also analyzed. The simulated results demonstrate successful breast cancer treatment using MNPs with minimum side effects. Validation of current simulations results with experimental studies existing in literature advocates the success of our therapy. The increase in the amplitude and frequency of the AMF increases of the temperature in the tumor. The variation of mesh from coarser to finer increased the temperature through small fractions. We have also simulated the magnetic induction problem where the magnetic field is generated by current-carrying coil conductors induce heat in nearby breast tumors due to excitation of MNPs by magnetic flux. This research will aid treatment protocols and real-time clinical breast cancer treatments.  相似文献   

9.
Mycobacterial HSP70 protein coupled with ovalbumin is known to elicit antigen-specific CD8+ T-cell response. We investigated whether anti-idiotype immunity can likewise be enhanced using a conjugate of recombinant mycHSP70 and the Ig Id in a murine lymphoma model, A20. Plasmids were constructed of A20 tumor to generate A20Id-HSP70 (scFv-H), unconjugated A20Id (scFv), and mycHSP70 (H) recombinant proteins. We evaluated their relative efficacy in activating anti-tumor immunity that can reduce the mortality of tumor-challenged BALB/c mice; significantly, a longer term protection (>50% of the population) was observed in mice vaccinated with scFv-H compared to those receiving the scFv or H proteins. Concomitantly a much higher-level activation in anti-A20 cytotoxic T-cell activity, IFN-γ secretion and predominantly anti-A20 IgG2a response was also observed with the scFv-H group. Thus, conjugating HSP70 with the A20Id renders the latter significantly immunogenic and affords longer protection against A20 tumor progression.  相似文献   

10.
The history of immunizing animals with fetal tissues to generate an antitumor response dates back a century ago. Subsequent reports supported the idea that vaccination with embryonic materials could generate cancer-specific immunity and protect animals from transplantable and chemically induced tumors. In our study, we found C57 BL/6 mice vaccinated with embryonic stem cells (ESCs) received obvious antitumor immunity, which protected them from the formation and development of lung cancer. Furthermore, we investigated the antitumor effects of administration of ESCs in mice with minor and/or heavy tumor load. The tumor growth was monitored, the proliferation of lymphocytes and secretion of cytokines were examined, and finally the tissue sections were approached by immunohistochemical and apoptosis staining. The results suggested that mice injected with ESCs received obvious tumor inhibition and retardation due to significant lymphocyte proliferation and cytokine secretion, which help to rebuild the host’s immunity against cancer to some extent and comprise the main part of antitumor immunity. Moreover, mice with minor tumor load received stronger antitumor effect compared with mice with heavy tumor load, may be due to relatively intact immune system. Thus, besides their function as prophylactic vaccines, administration of ESCs could be a potential treatment for cancer, which obviously prevent and control the proliferation and development of malignant tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号