首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The eggplant (Solanum melongena L.) genome is the least investigated among the economically most important solanaceous crops. Extensive use of molecular markers will improve eggplant germplasm enhancement and breeding. Microsatellites, or simple sequence repeats, have proved to be very useful for eggplant germplasm management and breeding, but there is limited availability of these polymorphic, codominant, and highly repeatable markers in eggplant. We developed a genomic DNA library enriched with AG/CT, which allowed the identification of 55 new genomic microsatellites. Variation parameters of microsatellite loci analyzed showed high average values. The potential of these markers for fingerprinting was assessed in a collection of 24 accessions, of which 22 correspond to S. melongena from different types (landraces, heirlooms, modern F1 hybrids, and obsolete cultivars) and origins, and two to each of the cultivated relatives S. aethiopicum and S. macrocarpon. The multivariate (cluster and PCoA) analyses clearly differentiated four main clusters: (a) two outgroups formed by S. aethiopicum and S. macrocarpon accessions, (b) S. melongena accessions derived mostly from the Mediterranean basin, Central Europe, Africa, and America (??occidental?? eggplants), and (c) S. melongena accessions derived mostly from Eastern and Southeastern Asia (??oriental?? eggplants). However, no apparent association pattern was found for accessions of the different types. Observed heterozygosity (H o) values were low, although hybrid cultivars had higher values (H o?=?0.12) than non-hybrid materials (H o?=?0.02). The new set of eggplant microsatellite markers has proved highly informative and useful for studying the diversity, relationships, and genetic characteristics of an eggplant collection. These markers will be useful for germplasm management and breeding in eggplant.  相似文献   

2.
We present the first study of patterns of genetic diversity of sorghum landraces at the local scale. Understanding landrace diversity aids in deciphering evolutionary forces under domestication, and has applications in the conservation of genetic resources and their use in breeding programs. Duupa farmers in a village in Northern Cameroon distinguished 59 named sorghum taxa, representing 46 landraces. In each field, seeds are sown as a mixture of landraces (mean of 12 landraces per field), giving the potential for extensive gene flow. What level of genetic diversity underlies the great morphological diversity observed among landraces? Given the potential for gene flow, how well defined genetically is each landrace? To answer these questions, we recorded spatial patterns of planting and farmers’ perceptions of landraces, and characterized 21 landraces using SSR markers. Analysis using distance and clustering methods grouped the 21 landraces studied into four clusters. These clusters correspond to functionally and ecologically distinct groups of landraces. Within-landrace genetic variation accounted for 30% of total variation. The average F is over landraces was 0.68, suggesting high inbreeding within landraces. Differentiation among landraces was substantial and significant (F st = 0.36). Historical factors, variation in breeding systems, and farmers’ practices all affected patterns of genetic variation. Farmers’ practices are key to the maintenance, despite gene flow, of landraces with different combinations of agronomically and ecologically pertinent traits. They must be taken into account in strategies of conservation and use of genetic resources.  相似文献   

3.
Intergeneric somatic hybridization between Brassica napus and Raphanus sativus was carried out to enrich gene pool of B. napus. Twelve somatic hybrids were produced via PEG-mediated protoplast fusion between B. napus and R. sativus. The hybridity was confirmed by morphological observation and molecular marker analysis. Hybrid progenies (BC1) were obtained via backcrosses with B. napus. Behaviour of R. sativus chromosomes in a B. napus background in the F1 and BC1 plants was revealed by genomic in situ hybridization (GISH). The potential of somatic hybridization to enrich the suitable gene pool for rapeseed breeding is discussed.  相似文献   

4.
A set of 41 wheat microsatellite markers (WMS), giving 42 polymorphic loci (two loci on each chromosome), was used to describe genetic diversity in a sample of 559 French bread wheat accessions (landraces and registered varieties) cultivated between 1800 and 2000. A total of 609 alleles were detected. Allele number per locus ranged from 3 to 28, with a mean allele number of 14.5. On the average, about 72% of the total number of alleles were observed with a frequency of less than 5% and were considered to be rare alleles. WMS markers used showed different levels of gene diversity: the highest PIC value occurred in the B genome (0.686) compared to 0.641 and 0.659 for the A and D genomes, respectively. When comparing landraces with registered varieties gathered in seven temporal groups, a cluster analysis based on an F st matrix provided a clear separation of landraces from the seven variety groups, while a shift was observed between varieties registered before and after 1970. There was a decrease of about 25% in allelic richness between landraces and varieties. In contrast, when considering only registered varieties, changes in diversity related to temporal trends appeared more qualitative than quantitative, except at the end of the 1960s, when a bottleneck might have occurred. New varieties appear to be increasingly similar to each other in relation to allelic composition, while differences between landraces are more and more pronounced over time. Finally, considering a sub-sample of 193 varieties representative of breeding material selected during the twentieth century by the six most important plant breeding companies, few differences in diversity were observed between the different breeding programmes. The observed structure of diversity in French bread wheat collections is discussed in terms of consequences, both for plant breeders and for managers of crop genetic resources.Communicated by H.H. Geiger  相似文献   

5.
茄子品种遗传多样性的RAPD检测与聚类分析   总被引:4,自引:0,他引:4  
用RAPD分子标记的方法对来自不同国家的34份茄子品种进行遗传多样性分析,从120条RAPD引物中筛选出有效的22条引物分别对34份茄子品种进行扩增,共检测出232个等位基因位点,每条引物平均检测出10.5个,其中192个为多态位点,多态位点比率为82.76%。POPGENE结果分析表明,Nei's基因多样性H为0.2756,Shannon指数为0.4145,显示出丰富的遗传多样性。计算得出的Jaccard相似系数变化范围为0.331~0.805,根据Jaccard相似系数和组内连接法建立的系统聚类图,34份茄子大致可分为两大类型:圆茄类型和长茄类型,这与经典的形态学分类基本上相符,从而从分子水平上支持了以果形作为茄子品种分类指标的观点。  相似文献   

6.
7.
Diversity of North European oat analyzed by SSR, AFLP and DArT markers   总被引:1,自引:0,他引:1  
Oat is an important crop in Nordic countries both for feed and human consumption. Maintaining a high level of genetic diversity is essential for both breeding and agronomy. A panel of 94 oat accessions was used in this study, including 24 museum accessions over 100- to 120-year old and 70 genebank accessions from mainly Nordic countries and Germany, covering different breeding periods. Sixty-one polymorphic SSR, 201 AFLP and 1056 DArT markers were used to evaluate the past and present genetic diversity of the Nordic gene pool. Norwegian accessions showed the highest diversity, followed by Swedish and Finnish, with German accessions the least diverse. In addition, the Nordic accessions appeared to be highly interrelated and distinct from the German, reflecting a frequent germplasm exchange and interbreeding among Nordic countries. A significant loss of diversity happened at the transition from landraces and old cultivars to modern cultivars. Modern oat originated from only a segment of the landraces and left the remainder, especially black oat, unused. However, no significant overall diversity reduction was found during modern breeding periods, although fluctuation of diversity indices was observed. The narrow genetic basis of the modern Nordic gene pool calls for increasing genetic diversity through cultivar introduction and prebreeding based on neglected sources like the Nordic black oat.  相似文献   

8.
 This study was intended to investigate the extent of genetic differentiation in parental lines of rice hybrids and to analyze the genetic basis underlying the fertility phenomenon in distant crosses. Two subsets of rice material (111 entries in total) were used, including 81 doubled-haploid (DH) lines and 30 Indica and Japonica rice varieties or lines (as a control). The DH lines was derived from a heterotic Indica/Japonica cross (Gui630/02428) by anther culture. The materials in the control represent a broad spectrum of the Asian cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars, super rice and parents of superior hybrids. In accordance with the NC II design, 57 out of the DH lines were test-crossed to two important wide compatibility lines: photoperiod-sensitive genetic male sterile (PGMS) line N422s and thermo-sensitive genetic male sterile (TGMS) line Peiai64s. The F1s and their parents, 182 entries in total, were examined for the performance of seven traits in a replicated field trial. All the rice materials was surveyed for polymorphisms using 92 RFLP markers selected from two published molecular marker linkage maps. Genotypes of the F1 hybrids at the molecular-marker loci were deduced from the parental genotypes. The analysis showed that there were two types of genetic differentiation in the two subsets of rice material; that is, qualitative differentiation in the control and quantitative differentiation in the DH lines. In addition, favorable genic interactions (both intra- or inter-locus) contributed to better increase the fertility in hybrids of distant crosses through incorporation of a wide-compatibility line as the female parent. Favorable genic interactions can be applied in hybrid rice breeding programs by selecting parents with an appropriate extent of genetic differentiation. Received: 5 June 1997 / Accepted: 10 September 1997  相似文献   

9.
Landraces are domesticated local plant varieties that did not experience a deliberate and intensive selection during a formal breeding programme. In Europe, maize landraces are still cultivated, particularly in marginal areas where traditional farming is often practiced. Here, we have studied the evolution of flint maize landraces from central Italy over 50 years of on-farm cultivation, when dent hybrid varieties were introduced and their use was widespread. We have compared an 'old' collection, obtained during the 1950s, before the introduction of hybrids, and a recent collection of maize landraces. For comparison, a sample of maize landraces from north Italy, and of improved germplasm, including hybrids and inbred lines were also used. A total of 296 genotypes were analysed using 21 microsatellites. Our results show that the maize landraces collected in the last 5–10 years have evolved directly from the flint landrace gene pool cultivated in central Italy before the introduction of modern hybrids. The population structure, diversity and linkage disequilibrium analyses indicate a significant amount of introgression from hybrid varieties into the recent landrace populations. No evidence of genetic erosion of the maize landraces was seen, suggesting that in situ conservation of landraces is an efficient strategy for preserving genetic diversity. Finally, the level of introgression detected was very variable among recent landraces, with most of them showing a low level of introgression; this suggests that coexistence between different types of agriculture is possible, with the adoption of correct practices that are aimed at avoiding introgression from undesired genetic sources.  相似文献   

10.
An essential assumption underlying markerbased prediction of hybrid performance is a strong linear correlation between molecular marker heterozygosity and hybrid performance or heterosis. This study was intended to investigate the extent of the correlations between molecular marker heterozygosity and hybrid performance in crosses involving two sets of rice materials, 9 indica and 11 japonica varieties. These materials represent a broad spectrum of the cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars and parents of superior hybrids. Varieties within each set were intermated in all possible nonreciprocal pairs resulting in 36 crosses in the indica set and 55 in the japonica set. The F1s and their parents, 111 entries in total, were examined for performance of seven traits in a replicated field trial. The parents were surveyed for polymorphisms using 96 RFLP and ten SSR markers selected at regular intervals from a published molecular marker linkage map. Molecular marker genotypes of the F1 hybrids were deduced from the parental genotypes. The analysis showed that, with very few exceptions, correlations in the indica dataset were higher than in that of their japonica counterparts. Among the seven traits analyzed, plant height showed the highest correlation between heterozygosity and hybrid performance and heteorsis in both indica and japonica datasets. Correlations were low to intermediate between hybrid performance and heterozygosity (both general and specific) in yield and yield component traits in both indica and japonica sets, and also low to intermediate between specific heterozygosity and heterosis in the indica set, whereas very little correlation was detected between heterosis and heterozygosity (either general or specific) in the japonica set. In comparison to the results from our previous studies, we concluded that the relationship between molecular marker heterozygosity and heterosis is variable, depending on the genetic materials used in the study, the diversity of rice germplasms and the complexity of the genetic basis of heterosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号