首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
棉属栽培种与野生种杂交的不亲和性   总被引:1,自引:1,他引:0  
何鉴星  梁正兰 《遗传学报》1991,18(2):140-148
本文研究了棉属栽培种与野生种杂交的不亲和性,试验材料涉及5个染色体组,包括2个栽培种(陆地棉和中棉)和5个野生种(戴维逊氏棉、瑟伯氏棉、三裂棉、阿拉伯棉和比克氏棉)。以陆地棉作母本,异己花粉管在花柱中生长缓慢,有花粉管胚珠低于10%,陆地棉×戴维逊氏棉杂种胚在子叶期坏死。以中棉作母本,不亲和性主要表现在受精后的胚胎发育过程中。  相似文献   

2.
以陆地棉(Gossypium hirsutum L.)做母本,野生的瑟伯氏棉(Gossypium thurberi Tod)和克劳茨基棉(Gossypium klotzschianum Anderss.)做父本,并以陆地棉自交为对照,取杂交授粉后两天的胚珠进行离体培养,研究胚胎发育。在培养条件下,三种遗传型合子启动的时间不一致,而且胚乳的发育也存在差异。珠心和胚囊腔的生长变化在有胚胚珠和无胚胚珠之间,存在明显的不同。球形胚时期,是杂种胚能否正常发育的关键时期。离体培养,改变了自然杂种状态的胚和胚乳以及胚和母体组织的不协调关系,因此产生了较多的杂种胚。  相似文献   

3.
利用荧光技术对芥菜型油菜(Brassica juncea)与白菜(B. pekinesis)种间正反杂交后花粉萌发和花粉管生长过程进行了观察。结果显示: 芥菜型油菜与白菜正交授粉后, 花粉在柱头上能正常萌发, 多数花粉管沿花柱到达胚珠完成受精, 且受精方式有珠孔受精、合点受精和中部受精, 少量花粉管生长不正常, 出现花粉管顶端膨大扭曲, 花粉管分支等异常现象; 反交授粉后, 花粉在柱头上萌发时柱头乳突细胞产生强烈胼胝质反应, 影响花粉管生长, 只有少量花粉管通过花柱到达胚珠完成受精。用石蜡切片技术观察了正反杂交后杂种的胚胎发育, 正交杂种胚胎发育较早, 胚和胚乳生长较正常, 杂种胚一般均能发育至成熟; 反交杂种胚发育至心型期便不能继续发育, 胚乳也停滞在游离核阶段并最终败育。综合分析 表明, 芥菜型油菜与白菜正反杂交都存在一定程度的受精不亲和性。  相似文献   

4.
芥菜型油菜与白菜正反杂交的胚胎学研究   总被引:3,自引:0,他引:3  
利用荧光技术对芥菜型油菜(Brassica juncea)与白菜(B.pekinesis)种间正反杂交后花粉萌发和花粉管生长过程进行了观察。结果显示:芥菜型油菜与白菜正交授粉后,花粉在柱头上能正常萌发,多数花粉管沿花柱到达胚珠完成受精,且受精方式有珠孔受精、合点受精和中部受精,少量花粉管生长不正常,出现花粉管顶端膨大扭曲,花粉管分支等异常现象;反交授粉后,花粉在柱头上萌发时柱头乳突细胞产生强烈胼胝质反应,影响花粉管生长,只有少量花粉管通过花柱到达胚珠完成受精。用石蜡切片技术观察了正反杂交后杂种的胚胎发育,正交杂种胚胎发育较早,胚和胚乳生长较正常,杂种胚一般均能发育至成熟;反交杂种胚发育至心型期便不能继续发育,胚乳也停滞在游离核阶段并最终败育。综合分析表明,芥菜型油菜与白菜正反杂交都存在一定程度的受精不亲和性。  相似文献   

5.
普通番茄四倍体与二倍体杂交的杂种不育性研究   总被引:4,自引:0,他引:4  
申书兴  邹道谦 《遗传学报》1991,18(6):520-524
以普通番茄的四倍体为母本与二倍体杂交时,花粉萌发、花粉管生长及双受精过程都正常;对受精的胚珠形态结构观察得知:4天前幼胚和胚乳发育正常,授粉后4天胚乳出现异常开始退化,5天时这种异常现象更明显,第7天胚乳已完全解体。幼胚在胚乳完全解体前发育正常,而胚乳解体后,幼胚也开始解体。所以普通番茄二倍体与四倍体杂交的杂种不育的原因,在于胚乳败育以及胚的死亡。  相似文献   

6.
棉属二倍体野生棉与四倍体栽培棉种间杂交的胚珠培养   总被引:3,自引:0,他引:3  
用棉属二倍体野生种与四倍体栽培种陆地棉杂交及四倍体栽培种海岛棉、陆地棉与二倍体栽培种亚洲棉杂交,以陆地棉自交作对照。将杂交和自交授粉后2天(部分材料为1天)的胚珠在液体培养基上进行飘浮静置暗培养。培养50—70天,7个杂交组合及2个自交品种的胚珠均获得一定频率的胚(包括成熟和不成熟胚)及成熟胚萌发的苗。其中陆地棉与澳洲野生棉、阿拉伯棉、亚洲棉、海岛棉与亚洲棉等4个杂交组合已得到杂种一代植珠。试验结果表明,同一组合的胚珠,在不同的培养基上获得胚的频率和胚萌发率有明显差异;不同组合的胚珠,在同一培养基上培养的结果也不一致。陆地棉X亚洲棉、海岛棉×亚洲棉两个组合授粉后1天的胚珠培养也获得一定频率的胚发育。  相似文献   

7.
小叶杨与美杨种间杂交的胚胎发育和杂种胚珠的离体培养   总被引:1,自引:0,他引:1  
1.观察了小叶杨(Populus simonii Carr.)和美杨(Populus pyramidalis Borkh.)人工杂交后从花粉粒萌发至胚分化完成的发育过程:1.大多数美杨花粉粒可以在小叶杨的柱头上萌发长出花粉管,花粉管在花柱中正常地生长并通过珠孔进入胚囊,于授粉后4—7天发生双受精作用,形成初生胚乳核和合子。胚乳的发育正常或不正常,后者表现为在游离核阶段的败育或胚乳细胞发育不良。胚在各个发育阶段尤其是球形胚和心形胚阶段,都可能败育,也可以正常发育成为分化完全的有效胚。2.将授粉后19天、22天、26天和29天含有不同发育阶段(心形期、鱼雷期、子叶伸长期)未成熟的杂种胚珠接种于人工培养基上,结果表明:1.M110培养基(1/2 MS+IAA 0.01毫克/升+BA 0.1毫克/升+蔗糖2%)是选用培养基中效果最好的;2.不同发育阶段杂种胚的胚珠可以离体培养成生长正常的小植株。  相似文献   

8.
以‘杂交石竹’为试验材料,利用荧光显微镜观察其授粉后花粉萌发、花粉管生长情况,采用石蜡切片法对其受精及胚胎发育过程进行观察研究。结果表明:(1)授粉后1h母本柱头上少量花粉开始萌发;授粉后4h大量花粉萌发,花粉管生长至柱头中部有胼胝质出现;授粉后6h花粉管生长至子房组织并有少量与胚珠结合;授粉后15h柱头中出现大量胼胝质,花粉管与胚珠结合数增多;授粉后24h胚珠周围出现多条花粉管,其中1条花粉管进入胚珠,部分进入胚囊的花粉管卷曲盘绕生长并产生胼胝质;精细胞与极核的融合主要发生在授粉后17~48h,与卵细胞融合主要于授粉后1~3d。(2)杂交石竹胚发育经过原胚、球形胚、棒状形胚、心形胚、鱼雷形胚和子叶形胚阶段。(3)杂交障碍表现为:只有游离的胚乳核而无胚发育的胚囊、合子未分裂、两极核未融合、球形胚败育。研究表明,杂交石竹存在受精前和受精后障碍,这是导致其结实率低的主要原因。  相似文献   

9.
云南野山茶与金花茶杂交有性过程的观察   总被引:3,自引:0,他引:3  
作者对云南野山茶与金花茶种间杂交的有性过程进行了观察,得到如下结果: 1.金花茶花粉粒在野山茶柱头上于授粉后4小时开始萌发。花粉管在花柱中的伸长基本正常。 2.双受精于授粉25—30天前后发生。杂种幼胚及胚乳早期的发育较为正常,授粉后第85天杂种胚与对照相比较,在胚的分化程度和胚乳的发育方面都未见明显差异,所观察到的胚有70%以上进入了鱼雷期。 3.授粉第90天以后,幼胚胚芽开始分化,自交胚生长发育极为迅速,而杂种胚在生长和分化方面都显著地迟缓下来。这可能是杂种胚与母体组织遗传和生理上的某些不协调所致。因此适时地进行杂种幼胚的离体培养,对育种工作是十分必要的。  相似文献   

10.
栽培大麦×普通小麦杂种发育的胚胎学观察   总被引:4,自引:0,他引:4  
对大麦与小麦远缘杂交时雌雄性核的结合及杂种胚和胚乳的发育情况进行了观察。大、小麦杂交时,可发生双受精作用、单受精作用,或受精过程失败。单受精作用发生的时间参差不齐。大小麦杂种胚的发育进程最初与大麦自交时情况相似。以后胚发育缓慢,并长期停留在原胚阶段。在授粉后12—15天,原胚发育达到高峰。仅有个别杂种胚在授粉后第18、19天进入胚分化,且胚分化不完善。同时,在整个发育过程中,原胚不时出现解体退化现象。杂种胚乳的发育仅在最初阶段形成若干游离核,此后胚乳组织转向退化。在授粉10天以后的子房中,未检查到胚乳或胚乳解体后的残留物。  相似文献   

11.
The present investigation is the first of a series of cytological researches on inter-specific hybridization of cottons. The present report deals with the cytological behavior of sex and related cells revealed in crossing Gossipium hirsutum (female parent) with G. arboreum. Self-pollenated G. hirsutum served as control. The germination of pollen grains on the stigma and the growth of pollen tubes in the style and the entry of pollen tubes into the micropyles in crosses are in a fairly normal' manner when compared with controls. The percentages of pollen tubes entering ovules of the crossed and controls have no significant difference, being 48.2% in crosses and 54.7% in controls. Fertilization proceeds also normal in cross pollinated ovules. About 92.7% of pollinated ovules are found to have completed the fusion of sexual elements. It is thus: shown that the growth of foreign pollen tubes and fusion of female elements with foreign sperms are not the factors which cause failure in hybridization. The development of endosperm in crosses is abnormal. The number of free nuclei of hybrid endosperm is much smaller than that of controls; the formation of hybrid cellular endosperm is 6 or 7 days earlier than that of controls. The hybrid endosperm cells start to abort soon after their formation. About 14 days after pollination they become completely disintegrated. The hybrid embryo which thus far developed normally becomes arrested in its development and aborts also after that time. It may be concluded that the sterility of crosses between G. hirsutum and G. arboreum is primarily attributed to the abortion of hybrid endosperm. The sound development of the hybrids should be sought in the improvement nutrition of the hybrid embryo from resource other than their own endosperm.  相似文献   

12.
2—3 days after cross-pollination the hybrid ovules of cotton (Gossypium hirsutum×G. arboreum) were cultivated in vitro. The hybrid zygot in excised ovule started to divide, frequently passing through several stages to develop into cotyledonous embryos. The embryos were inducted into seedlings. The hybrid plants in blossom were obtained as a result. The histological study was done for ovules of self- pollination in vivo and of cross-pollination in vitro. The early abortion of endosperm in hybrid ovules was observed. In the prophase the nucellus was disintegrated slowly, and in the middle and terminal phase it disintegrated more rapidly. These were identified in hybrid F1. The size of corolla is intermadiate form between female and male. The violet-red spots at the base of petals are similar to male, while there are no such spots in female. None of the pollen can fertilize. Hybrid F1 is not fertile after self-pollination or backcross by the pollen of parent. The chromosome number in root tip Cell of hybrid F1 is 2n=3x=39.  相似文献   

13.
The embryonic development following P. simonii Cart. × P. pyramidalis Borkh. is described in the present paper. The majority of pollen grains of P. pyramidalis Borkh. may germinate on the stigma of P. simonii Cam and the pollen tubes grow normally through the style and enter the embryo sac from the micropyle. Fertilization occurs as usual 4–7 days after pollination. A lot of proembryos and heart-shaped embryos are abortive; however, the others may develop normally and grow into mature embryos. Some of the endosperms appear normal and others may degenerate at free nuclear stage or cease to develop further at cellular stage. The ovules containg immature hybrid embryos of 19 days, 22 days, 26 days and 29 days after pollination at various developmental stages (heart-shaped stage, torpedo-stage and cotyledonary elongation stage) are excised and inoculated on nutrient agar for culture. The results show that: ( 1 ) Mll0 medium ( 1/2 MS+IAA 0.01 mg/L+BA 0.1 mg/L+sucrose 2% ) is the best of all the media used; (2) immature hybrid embryos of various developmental stages contained in ovules cultured in vitro may grow into normal plantlets.  相似文献   

14.
The pollen tube behaviour in the style and early embryogenesis following interspecies pollination between Actinidia deliciosa No. 26 and A. arguta were observed by means of fluorescence and light microscopy. Pollen grains germinated on the papillate stigma and pollen tubes grew along the V-shaped open-type style. Pollen tubes showed slower growth and reached the ovules 50--60 hours later than those of the control. Several abnormalities of pollen tubes have been observed at the base of the style, including wave-like pollen tubes, pollen tubes with swollen or pointed tips, with variable diameters, and a few with irregular growth. Random deposition of callose along pollen tube wall and even the whole wall was observed. About 26.74 % of the ovules were successfully fertilized and developed into seeds, among them 68.50% of the seeds were normal and 31.50% were abortive. About 11.41% were empty seeds without embryo and endosperm. Unfertilized small ovule was 61.45 %. Normal seed and its embryo were smaller than those of the control. The development of embryo was of the Soland type. The endosperm was cellular. The zygote remained quiescent for about 12-15 days before it started to divide, eventually forming a cotyledonary embryo 50 days after pollination.  相似文献   

15.
(1) The pollen grains of Pennisetum can germinate normally on the stigma of rice and the pollen tubes can grow into the style and enter the embryo sacs. However, the process of double fertilization is slow and more or less abnormal and phenomenon of simple fertilization often occurs. (2) It has been found that in the majority of cases the development of the embryos is slow and stays long in the stage of globular embryos, thus, the differentiation of the embryos is very difficult and degeneration of the embryos appears many times. Simple differentiation was observed only in some embryos during 16–24 days after pollination. Normal differenting and developing embryos were not observed. The cause of the degeneration of the embryos is related to the state of endosperm development and also to the non-coordination of the genomes of both parents. (3) The development of the endosperm is abnormal. The change from the free nuclei into the cells in the endosperm is delayed as late as the 8th day after pollination. The whole endosperm tissue is composed of the cell masses which are quite different both in shape and function, a part of these endospemn cells lacks the ability to synthesize starch. The disintegration of the endosperm could be frequently observed during their development. (4) A lots of starch are accumulated in the nucellar cells near the antipodals, It is shown that there was some metabolic confusion resulted from the crossing in the embryo sacs. Based on the above mentioued results the authers consider that the failure of producing seeds by crossing is at least related to the nutrient condition which are essential for the development of embryos. If embryo culture technique is employed at the early stage of the embryo development the hybrid seeds could be obtained.  相似文献   

16.
Rhododendron nuttallii T. W. Booth (Ericaceae) was used to derive concurrent timetables for megagametophyte, pollen tube and early postfertilization development from anthesis through 3 wk after pollination, based on timed collections of self-pollinated pistils. Stages of development were determined for over 33,500 cleared ovules, including, for selected collection dates, stages on different portions of the placenta. Pollen tube information was obtained by fluorescence microscopy of pistil squashes stained with aniline blue. Because of the very large number of ovules observed, it was possible to recognize a much more closely graded series of stages in megagametophyte development than is usually the case. While a range of stages occurred on all days, development progressed steadily from a majority of functional spores and 2-nucleate gametophytes on the day of anthesis to mostly a late zygote-primary endosperm stage at 18 days, and some 2-celled endosperm stages at 21 days, after pollination. At all times the most advanced stages, including first pollen tube entries, occurred on the outer surface of the lower half of the placenta, and the youngest on the inner surface of the uppermost portion. Fertilizable ovules were not found in any frequency until 8 days after pollination (then in only about 34% of the ovules); a few fertilized ones were seen after 10 days but constituted less than 5% until 12 days after pollination, thereafter increasing to about 60%. Fertilization occurred in any one of three morphologically recognizable stages distinguished by position and state of fusion of polar nuclei. Pollen germinated on the stigma 1–2 hr after pollination, and pollen tubes grew at a rate of about 1–1.25 cm/day, reaching the top of the ovary in 8–9 days with the first ovule entries seen after 10 days. There was a close correlation between megagametophyte development and pollen tube growth, with large numbers of functionally mature ovules not being found until pollen tubes had reached the ovary. While nuclei within ovules could not be distinguished in the squashes, three gametophyte stages that could be recognized—unelongated, elongated either without or with a pollen tube—were tallied for almost 29,000 ovules. The progression in these general stages corresponded well with that documented in more detail from cleared ovules. Unpollinated pistils showed a similar progression of gametophyte stages until the time fertilization would start to occur, after which there was continued accumulation of functionally mature ovules. A variety of abnormally developed and/or collapsing(ed) ovules or gametophytes were seen; collectively, they averaged over 8.6% of all ovules.  相似文献   

17.
异叶苦竹花粉管生长及双受精过程   总被引:2,自引:0,他引:2  
以异叶苦竹为材料,采用扫描电镜、荧光显微镜技术及传统的石蜡制片技术,解剖观察其花粉管生长途径及双受精过程。结果表明:(1)授粉后,花粉在柱头上吸水膨胀,约30 min即可萌发。(2)授粉1~2 h后花粉管可达到花粉长度的5~10倍,花粉管在柱头分支中进一步伸长,并开始伸入花柱中生长。(3)授粉后5 h,大量花粉管沿引导组织进入花柱基部与子房顶部之间的子房壁,有少量花粉管在子房壁与外珠被之间的缝隙中生长。(4)授粉后8 h,少量花粉管到达珠孔端。(5)授粉后15~18 h,精核与极核融合,形成初生胚乳核;精、卵核融合,形成合子。(6)授粉后20~30 h,仍可在花柱中见到大量呈束状的花粉管。(7)授粉后48 h,子房内的大部分花粉管出现解体,大多数花粉死亡。研究认为,精细胞到达胚珠的时间为8 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号