首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
二酮酸类化合物(DKAs)是目前最有前景的HIV-1整合酶(integrase, IN)抑制剂.为了解DKAs引起的多种耐药株共有的耐药性机理,选择3种S-1360引起的IN耐药突变体,用分子对接和分子动力学模拟,研究了野生型和突变型IN与S-1360的结合模式,基于该结合模式探讨了3种耐药突变体所共有的耐药性机理.结果表明:在突变体中,S-1360结合到耐药突变IN核心区中的位置靠近功能loop 3区却远离与 DNA结合的关键残基,结合位置不同导致S-1360的抑制作用部分丧失;残基138到166区域的柔性对IN发挥生物学功能很重要,S-1360能与DNA结合的关键残基N155及K159形成氢键,这2个氢键作用降低了该区域的柔性,突变体中无类似氢键,因而该区域柔性增高;在突变体中,S-1360的苯环远离病毒DNA结合区,不能阻止病毒DNA末端暴露给宿主DNA;T66I突变导致残基Ⅰ的长侧链占据IN的活性口袋,阻止抑制剂以与野生型中相同的方式结合到活性中心,这均是产生抗药性的重要原因.这些模拟结果与实验结果吻合,可为抗IN的抑制剂设计和改造提供帮助.  相似文献   

2.
王飞  李周坤  周杰  崔中利 《微生物学报》2015,55(12):1584-1592
摘要:【目的】DamH是一种具有酯酶活性的酰胺水解酶,其非活性中心氨基酸残基的突变对重组酶可溶性表达和比酶活产生一定的影响。拟探索DamH的活性中心氨基酸残基构成,并对其非活性中心氨基酸残基突变对可溶性表达和比酶活的影响进行研究。【方法】通过重叠延伸的方法对DamH可能的活性中心氨基酸S149、E244和H274以及非活性中心氨基酸D165及N192进行定点突变,通过静息细胞测活验证了S149、E244和H274 在催化2-氯-N-(2’-甲基-6’-乙基苯基)乙酰胺(CMEPA)水解反应中的作用,通过Ni2+- NTA亲和层析对D165及N192突变子进行纯化,对突变株和野生型比酶活进行比较。【结果】研究表明S149A使DamH的CMEPA 水解酶活性下降为野生型的5%,E244A和H274A突变导致其失去活性;D165P和N192P突变影响到DamH的可溶性表达,表达量分别为野生型的28.2%和20.8%,突变子N192P、D165P比酶活分别为野生型比酶活的55.5%和49.7%。【结论】DamH催化酯类底物和芳基酰胺类底物可能共用同一活性中心S149、E244和H274,其两个α螺旋的转角处氨基酸侧链极性和刚性结构的改变对可溶性表达以及活性有很大的影响。  相似文献   

3.
用定点突变的方法研究S221C/P225A,N118S/S221C/P225A,D60N/S221C/P225A和Q103R/S221C/P225A突变对蛋白酶活性,酯酶活性与蛋白酶活性之比的影响。结果表明:S221C/P225A突变使蛋白酶活性比枯草蛋白酶E低73000多倍,酯酶活性与蛋白酶活性之比是Subtiligase的3倍;N118S/S221C/P225A突变使蛋白酶活性和酯酶活性分别比S221C/P225A突变下降3.6倍和15倍,酯酶与蛋白酶活性之比下降4倍,同时增加变体酶的热稳定性;D60N/N118S/S221C/P225A突变使蛋白酶活性比N118S/S221C/P225A突变体下降15倍,但对酯酶活性几乎没有影响,酯酶与蛋白酶活性之比增加14倍,分别是S221C/P225A突变体和Subtiligase的3.3倍和10.3倍;但是,Q103R/N118S/S221C/P225A突变使蛋白酶活性比N118S/S221C/P225A突变体增加5倍,酯酶活性下降55倍,酯酶与蛋白酶活性之比下降1000倍。  相似文献   

4.
整合酶被认为是抗HIV-1药物研究的理想靶点之一。为了建立便捷高效的整合酶链转移反应抑制剂筛选方法,首先将HIV-1整合酶原核表达载体pNL-IN转化入大肠杆菌感受态细胞BL21(DE3)进行原核表达,并用镍琼脂糖凝胶进行亲和纯化,获得了纯度和活性均较高的整合酶重组蛋白;然后设计了生物素标记的供体DNA和FITC标记的靶DNA,用链霉亲和素磁珠捕获反应体系中的DNA产物;最后用荧光分析仪检测DNA产物的荧光信号,并计算待测样品的抑制率。用已知整合酶抑制剂S-1360和MK-0518对筛选方法进行了验证,测定结果与已有实验数据相当,表明本筛选方法能够有效应用于HIV-1整合酶链转移反应抑制剂的筛选。与现有的整合酶链转移反应抑制剂筛选方法相比,本筛选方法步骤更为简化、耗时更短、成本更低。  相似文献   

5.
本研究旨在探讨L-赖氨酸脱羧酶Ldc1E关键氨基酸在底物识别和催化过程中的作用;通过生物信息学方法选择突变位点,并利用直接定点突变技术,完成了6个关键氨基酸残基突变和功能鉴定研究。突变酶D692N最适温度和pH值分别为40℃和6.5。突变酶D692N比野生型Ldc1E对高温具有更强的耐受性,在40℃~55℃温浴1 h后剩余酶活力达到35%以上,在60℃温浴1 h后仍然保留20%的酶活力;而野生型酶Ldc1E在50℃以上温浴1 h后几乎失活。此外,50 mmol/L DMSO、5 mmol/L Al~(3+)和Ca~(2+)对突变酶的酶活力有激活作用,而Al3+对野生型酶Ldc1E具有明显抑制作用。突变酶D692N的分子动力学常数K_m升高了1.78倍,k_(cat)下降了20.2倍。突变酶S221A、H245A、D330A、H366A、F607Y经检测酶催化活性丧失。研究结果表明氨基酸残基位点D692对酶与底物的结合具有重要影响;而S221、H245、D330、H366、F607是Ldc1E酶活性能够体现的关键氨基酸位点,不可替换。本研究为探究L-赖氨酸脱羧酶的结构与功能关系提供理论参考。  相似文献   

6.
糖苷水解酶第一家族(GH1)β-葡萄糖苷酶(BGL1)有葡萄糖耐受性,进口端位点对酶活性及葡萄糖耐受性有很大影响,但具体作用机制尚不清楚。对嗜热革节孢GH1 BGL1进口端的W168、L173、F348、W349、C169、F180、D237、Y179、A260、H307、N335和E437这12个氨基酸残基进行定点突变,将突变酶与野生酶(WT)在毕赤酵母中表达,表达产物纯化后进行酶活性和葡萄糖耐受性测定。与WT相比,所有突变酶活性均有所降低,其中W168H、N335F和W349G几乎丧失活性。突变F180H、D237S、A260N和H307Y的Km低于WT,所有突变的kcat都降低。除L173Q外,其余突变都保持葡萄糖耐受性,在高浓度(400 mmol/L)葡萄糖时,Y179F和D237S酶活受到显著抑制。本研究表明,进口端位点对酶活性及葡萄糖耐受性均具有一定影响,催化活性通道的结构特异性可能是葡萄糖耐受机制。  相似文献   

7.
应用定向进化技术提高了嗜热拟青霉Paecilomyces thermophila J18耐热β-1,3-1,4-葡聚糖酶(PtLic16A)在酸性条件下的催化能力.结合易错PCR和DNA改组的方法,构建了β-葡聚糖酶的突变体文库;利用刚果红染色法建立了阳性克隆的高通量筛选体系.筛选得到的突变酶PtLic 16AM1的反应最适pH由7.0变化至5.5,且保持了原有的耐热性和比酶活.突变酶的DNA序列中有4个点位发生突变,引发了4处氨基酸替换,分别是T58S、Y110N、G195E和D221G.结构模拟结果显示,发生突变的4个氨基酸位点中,Y110N位置靠近酶活性中心,而T58S、G195E和D221G则离酶活性中心较远,其中T58S、G195E可能对酶最适pH的变化起到了关键作用.  相似文献   

8.
HIV-1整合酶蛋白的可溶性表达及功能研究   总被引:1,自引:1,他引:0  
HIV 1整合酶是HIV病毒复制中一个重要的酶,也是治疗艾滋病药物的一个重要靶点。为了开展以整合酶蛋白为靶点的抑制剂筛选,构建HIV 1整合酶重组质粒,在原核细胞中进行可溶性表达和功能研究。通过重叠PCR技术引入F185K和C280S突变于HIV 1 B亚型标准株的整合酶cDNA片段中,PCR扩增片段克隆到pET 28a(+)表达载体中,构建重组质粒,在E. coli中进行整合酶基因表达,SDS PAGE鉴定表达产物,亲和层析纯化蛋白,酶联免疫吸附实验方法测定整合酶的生物学活性。结果构建的重组质粒获得高效稳定的可溶性表达,ELISA实验证实该蛋白具有整合酶的3′切割DNA和5′链转移的活性。HIV 1整合酶蛋白的可溶性表达和活性研究为建立以整合酶为靶点的抗HIV药物筛选平台打下了基础。  相似文献   

9.
枯草杆菌蛋白酶E的蛋白质工程   总被引:2,自引:0,他引:2  
用定点突变和随机突变的方法,对枯草杆菌碱性蛋白酶E基因进行改造。突变后的基因插入大肠杆菌-枯草杆菌穿梭质粒pBE-2中,在碱性和中性蛋白酶缺陷型的枯草杆菌DBl04中进行表达,得到突变种的碱性蛋白酶.它们的突变位点分别是(M222A)、(M222A、N118S)、(M222A、N118S、Q103R)、(M222A、N118S、Q103R、D60N)。各突变种酶的性质测定 结果表明.M222A突变使酶抗氧化,N118S突变使酶增加热稳定性,Q103R和D60N突变虽然能增加酶的比活,但使酶的热稳定性大大下降,尤其是D60N突变使酶变得极不稳定。野生型碱性蛋白酶与(M222A)突变种的等电点均为8.92.而M222A,N118S)。(M222A,N118S ,Ql03R)和(M222A,118S.Q103R,D60N)突变酶分别为8.88.9.10和9.17。用Nsuc-AAPF-pNA作为底物时酶反应景适pH值为7.5~9.5,而用酪蛋白底物时最适pH值为10~12。  相似文献   

10.
N13D、S40E点突变提高木聚糖酶XYNB的热稳定性   总被引:1,自引:0,他引:1  
对来源于Streptomyces olivaceoviridis的高比活木聚糖酶XYNB进行同源建模和序列比较,设计了N13D、S40E的定点突变,以期改善中温酶XYNB的热稳定性。突变酶N13D、S40E分别在毕赤酵母中表达,经纯化后与野生型酶XYNB(同样经毕赤酵母表达后纯化)进行酶学性质比较,结果表明,突变酶N13D和S40E在70℃处理5min,热稳定性比XYNB分别提高了24.76%和14.46%;突变酶N13D的比活性比XYNB提高了22%。在其他性质方面突变酶N13D、S40E与野生型酶XYNB基本相似。通过对木聚糖酶XYNB的定点突变,提高了该酶的热稳定性,并为结构与功能的进一步研究提供了材料。  相似文献   

11.
12.
Raltegravir (MK-0518) is the first integrase (IN) inhibitor to be approved by the US FDA and is currently used in clinical treatment of viruses resistant to other antiretroviral compounds. Virological failure of Raltegravir treatment is associated with mutations in the IN gene following two main distinct genetic pathways involving either the N155 or Q148 residue. Importantly, in most cases, an additional mutation at the position G140 is associated with the Q148 pathway. Here, we investigated the viral DNA kinetics for mutants identified in Raltegravir-resistant patients. We found that (i) integration is impaired for Q148H when compared with the wild-type, G140S and G140S/Q148H mutants; and (ii) the N155H and G140S mutations confer lower levels of resistance than the Q148H mutation. We also characterized the corresponding recombinant INs properties. Enzymatic performances closely parallel ex vivo studies. The Q148H mutation ‘freezes’ IN into a catalytically inactive state. By contrast, the conformational transition converting the inactive form into an active form is rescued by the G140S/Q148H double mutation. In conclusion, the Q148H mutation is responsible for resistance to Raltegravir whereas the G140S mutation increases viral fitness in the G140S/Q148H context. Altogether, these results account for the predominance of G140S/Q148H mutants in clinical trials using Raltegravir.  相似文献   

13.
The diketo acid L-708,906 has been reported to be a selective inhibitor of the strand transfer step of the human immunodeficiency virus type 1 (HIV-1) integration process (D. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller, Science 287:646-650, 2000). We have now studied the development of antiviral resistance to L-708,906 by growing HIV-1 strains in the presence of increasing concentrations of the compound. The mutations T66I, L74M, and S230R emerged successively in the integrase gene. The virus with three mutations (T66I L74M S230R) was 10-fold less susceptible to L-708,906, while displaying the sensitivity of the wild-type virus to inhibitors of the RT or PRO or viral entry process. Chimeric HIV-1 strains containing the mutant integrase genes displayed the same resistance profile as the in vitro-selected strains, corroborating the impact of the reported mutations on the resistance phenotype. Phenotypic cross-resistance to S-1360, a diketo analogue in clinical trials, was observed for all strains. Interestingly, the diketo acid-resistant strain remained fully sensitive to V-165, a novel integrase inhibitor (C. Pannecouque, W. Pluymers, B. Van Maele, V. Tetz, P. Cherepanov, E. De Clercq, M. Witvrouw, and Z. Debyser, Curr. Biol. 12:1169-1177, 2002). Antiviral resistance was also studied at the level of recombinant integrase. Single mutations did not appear to impair specific enzymatic activity. However, 3' processing and strand transfer activities of the recombinant integrases with two (T66I L74M) and three (T66I L74M S230R) mutations were notably lower than those of the wild-type integrase. Although the virus with three mutations was resistant to inhibition by diketo acids, the sensitivity of the corresponding enzyme to L-708,906 or S-1360 was reduced only two- to threefold. As to the replication kinetics of the selected strains, the replication fitness for all strains was lower than that of the wild-type HIV-1 strain.  相似文献   

14.
15.
Signature HIV-1 integrase mutations associated with clinical raltegravir resistance involve 1 of 3 primary genetic pathways, Y143C/R, Q148H/K/R and N155H, the latter 2 of which confer cross-resistance to elvitegravir. In accord with clinical findings, in vitro drug resistance profiling studies with wild-type and site-directed integrase mutant viruses have shown significant fold increases in raltegravir and elvitegravir resistance for the specified viral mutants relative to wild-type HIV-1. Dolutegravir, in contrast, has demonstrated clinical efficacy in subjects failing raltegravir therapy due to integrase mutations at Y143, Q148 or N155, which is consistent with its distinct in vitro resistance profile as dolutegravir’s antiviral activity against these viral mutants is equivalent to its activity against wild-type HIV-1. Kinetic studies of inhibitor dissociation from wild-type and mutant integrase-viral DNA complexes have shown that dolutegravir also has a distinct off-rate profile with dissociative half-lives substantially longer than those of raltegravir and elvitegravir, suggesting that dolutegravir’s prolonged binding may be an important contributing factor to its distinct resistance profile. To provide a structural rationale for these observations, we constructed several molecular models of wild-type and clinically relevant mutant HIV-1 integrase enzymes in complex with viral DNA and dolutegravir, raltegravir or elvitegravir. Here, we discuss our structural models and the posited effects that the integrase mutations and the structural and electronic properties of the integrase inhibitors may have on the catalytic pocket and inhibitor binding and, consequently, on antiviral potency in vitro and in the clinic.  相似文献   

16.
Virologic failure during treatment with raltegravir, the first effective drug targeting HIV integrase, is associated with two exclusive pathways involving either Q148H/R/K, G140S/A or N155H mutations. We carried out a detailed analysis of the molecular and structural effects of these mutations. We observed no topological change in the integrase core domain, with conservation of a newly identified Ω‐shaped hairpin containing the Q148 residue, in particular. In contrast, the mutations greatly altered the specificity of DNA recognition by integrase. The native residues displayed a clear preference for adenine, whereas the mutant residues strongly favored pyrimidines. Raltegravir may bind to N155 and/or Q148 residues as an adenine bioisoster. This may account for the selected mutations impairing raltegravir binding while allowing alternative DNA recognition by integrase. This study opens up new opportunities for the design of integrase inhibitors active against raltegravir‐resistant viruses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The new integrase strand transfer inhibitor (INSTI) dolutegravir (DTG) displays limited cross-resistance with older drugs of this class and selects for the R263K substitution in treatment-experienced patients. We performed tissue culture selections with DTG, using viruses resistant to older INSTIs and infectivity and resistance assays, and showed that the presence of the E92Q or N155H substitution was compatible with the emergence of R263K, whereas the G140S Q148R, E92Q N155H, G140S, Y143R, and Q148R substitutions were not.  相似文献   

18.
A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations. An imidazole moiety was found to be the optimal amide substitute and the observed activity was rationalized with the use of calculated properties and modeling. Rat pharmacokinetic (PK) studies of the lead imidazole compounds demonstrated moderate clearance and moderate exposure.  相似文献   

19.
HIV-1 integrase (IN) is the molecular target of the newly approved anti-AIDS drug raltegravir (MK-0518, Isentress) while elvitegravir (GS-9137, JTK-303) is in clinical trials. The aims of the present study were (1) to investigate and compare the effects of raltegravir and elvitegravir on the three IN-mediated reactions, 3'-processing (3'-P), strand transfer (ST), and disintegration, (2) to determine the biochemical activities of seven IN mutants (T66I, L74M, E92Q, F121Y, Q148K, S153Y, and N155H) previously selected from drug-resistant patients and isolates, and (3) to determine the resistance profile for raltegravir and elvitegravir in those IN mutants. Our findings demonstrate that both raltegravir and elvitegravir are potent IN inhibitors and are highly selective for the ST reaction of IN. Elvitegravir was more potent than raltegravir, but neither drug could block disintegration. All resistance mutations were at least partially impaired for ST. Q148K was also markedly impaired for 3'-P. Both drugs exhibited a parallel resistance profile, although resistance was generally greater for elvitegravir. Q148K and T66I conferred the highest resistance to both drugs while S153Y conferred relatively greater resistance to elvitegravir than raltegravir. Drug resistance could not be overcome by preincubating the drugs with IN, consistent with the binding of raltegravir and elvitegravir at the IN-DNA interface. Finally, we found an inverse correlation between resistance and catalytic activity of the IN mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号